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2 THE FEEDFORWARD NEURAL NETWORK

1 Introduction

This project focuses on the implementation of a feed-forward neural network (FNN), the first of the multi-

layer networks we will explore in this course. Th objective of our project is to develop an FNN class in

Python that is capable of performing supervised learning tasks, such as regression and classification.

Our implementation includes developing a modular object-oriented design scheme to represent the net-

work and its layers, and to maintain the data required during training. Our network implements forward

propagation to compute the values of weights and outputs of our model, and the backward propagation

algorithm to calculate the gradient of our losses so we can update our weights using the gradient descent

and stochastic gradient descent algorithms.

Our network is tested on three distinct cases so we can fully evaluate and observe its behavior. We first

test the ability of our network perform a simple regression. Then, we model the one-step reachability of the

Van Der Pol system. Lastly, we explore image classification using the MNIST dataset of handwritten digits.

Through testing we began to explore different strategies for initializing our model weights, and gradient

clipping to handle exploding gradients.

This report provides details of the design and implementation of the feed forward neural network in

Python, in addition to details about our testing and analysis of the results obtained. Through this project

we were able to develop our understanding of multi-layer neural networks, the algorithms that perform the

learning, and how to troubleshoot certain problems in training and testing a neural network.

2 The Feedforward Neural Network

Our implementation adopts a modular, object-oriented approach to neural networks through two primary

classes: FNN and Layer. This design philosophy emphasizes flexibility and extensibility, allowing for the

construction of neural networks with varying architectures and depths. The FNN class serves as the container

for the network, managing a collection of Layer objects that represent each layer of the neural network.

Each layer in the network is encapsulated as a Layer object, maintaining its own state and operations.

The layer’s state includes a weight matrix that inherently incorporates bias terms by extending the input

dimensionality (shape: ninput + 1 × noutput). This implementation detail elegantly handles bias terms by

augmenting input data with ones using NumPy’s horizontal stack operation:

np.hstack([X, np.ones((X.shape[0], 1))]).

Each layer also manages its activation function and the corresponding derivative, essential components for

both forward- and back-propagation.

Additionally, the implementation supports a rich set of activation functions, providing the flexibility

needed for various types of neural network applications. These functions include the commonly used ReLU

(Rectified Linear Unit), sigmoid, and tanh, as well as more specialized functions like the identity function,

sign function, hard tanh, and log softmax. This versatility is demonstrated effectively across our test cases.

For instance, in our regression task (case1.py), we employ ReLU activation in the hidden layers with an

identity function in the output layer, while our classification task (case3.py) utilizes ReLU in the hidden

layers with log softmax in the output layer.

The modular nature of our implementation becomes particularly valuable when constructing networks of

varying complexity. Through simple layer stacking, we can create networks of arbitrary depth, each layer

potentially using different activation functions and having different dimensions. This flexibility allows the
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2.1 Backpropagation 2 THE FEEDFORWARD NEURAL NETWORK

network to be adapted for a wide range of applications, from simple regression tasks to complex classification

problems, as evidenced by our diverse test cases.

2.1 Backpropagation

Backpropagation is a process used in training neural networks that calculates the gradient of the loss function

with respect to the weights of the network. It is based on the chain rule of calculus, and starts with the

derivative of the loss function with respect to the output layer’s activation.

Figure 1: Vector Centric View of Backpropagation

Moving backward, layer by layer, the derivative vector from the following layer is multiplied by the

derivative of the activation function element-wise (see Figure 1), dL/dactivation, then the dot product is

taken of it and the transpose of the weights (also Figure 1), which is passed to the previous layer where

the process begins again. However, before moving back to the next layer, the dot product of the transpose

of the inputs of the layer and dL/dactivation is taken to calculate the derivative of the loss with respect

to the layer’s weights. This vector is pre-pended to the gradient matrix, which by the end of the process,

after the first layer is finished, is the same size as the weight matrix. As part of Regular Gradient Descent,

the learning rate is multiplied by the gradient matrix and the result is subtracted from the previous weight

matrix as part of the weight update step.

2.1.1 Backpropagation implementation details (methods, calculations etc.)

Backpropagation occurs globally in the FNN’s backward method:

def backward(self, y, y_pred, loss_func=’mse’):

if loss_func == ’mse’:

dL_dout = 2 * (y_pred - y) / y.shape[0]

elif loss_func == ’nll’:

dL_dout = y_pred - y

gradients_W = []

# Proceeding backward through the layers, add each new calculation to the front
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2.1 Backpropagation 2 THE FEEDFORWARD NEURAL NETWORK

# to create the gradients array

for layer in reversed(self.layers):

grad_W, dL_dout = layer.backward(dL_dout)

gradients_W.insert(0, grad_W)

return gradients_W

and locally in the layer’s backward method:

def backward(self, dL_dout):

dL_dout = np.nan_to_num(dL_dout)

activation_deriv = self.activation_deriv(self.z)

dL_dout *= activation_deriv

# partial derivative of the loss w.r.t. the weights

grad_W = np.dot(self.input_data.T, dL_dout)

# accumulation of partial derivative of the loss for each layer

dL_din = np.dot(dL_dout, self.weights.T)

# Remove the bias

dL_din = dL_din[:, :-1]

grad_W = np.clip(grad_W, -3, 3)

return grad_W, dL_din

In the layer’s backward method, the activation derivative (activation deriv) is calculated based on

whatever activation function was chosen for the layer. As described above, this is multiplied by the derivative

passed in from the following layer element-wise (dL dout *= activation deriv), and then the result is used

in the calculation for the derivative of the loss with respect to the weights (grad W) used to concatenate the

gradient matrix layer by layer. That same result is also used in the calculation of the partial derivative of the

loss for each layer (dL/din) which is accumulated from all the following layers and is passed to the previous

layer.

Additionally, because the bias was handled as an extra column vector added to each layer in the forward

pass, these are removed in the backward calculations as the bias is not pertinent. Gradient clipping and

NumPy’s nan to num method are used to restrain exploding gradients when they occur.

In the FNN’s backward method, the initial output gradient is calculated based on the specified loss

function, the empty gradient matrix is initialized, and then to begin calculation of the gradient matrix, the

weight matrix is reversed to begin at the last layer. Looping through the layers in reverse, the accumulated

partial derivative of the loss for each layer is updated through a single pass through the layer’s backward

method for each iteration, and the partial derivative of the loss with respect to the weights, which is also

returned from the layer’s backward method, is pre-pended to the gradient matrix to build a gradient matrix

that lines up with the weight matrix. We pre-pend because we are building the gradient matrix starting

with the last layer and ending with the first.
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2.2 Mini-Batch Stochastic Gradient Descent (SGD) 2 THE FEEDFORWARD NEURAL NETWORK

2.2 Mini-Batch Stochastic Gradient Descent (SGD)

The FNN implementation includes both standard gradient descent and mini-batch SGD, with the latter

being more sophisticated and practical for large datasets like those in Cases 2 and 3.

2.2.1 Mini-Batch SGD Implementation details (methods, calculations etc.)

Observe our core SGD method:

def sgd(self, X, y, batch_size, learning_rate, loss_func=’mse’):

indices = np.arange(X.shape[0])

np.random.shuffle(indices)

for start_idx in range(0, X.shape[0] - batch_size + 1, batch_size):

batch_indices = indices[start_idx:start_idx + batch_size]

X_batch = X[batch_indices]

y_batch = y[batch_indices]

Its key features include:

• Random shuffling of data indices for each epoch.

• Support for different loss functions (MSE and NLL)

• Batch processing for memory efficiency

• Integrated weight updates within the batch loop

The implementation supports two primary loss functions: Mean Squared Error (MSE) and Negative

Log-Likelihood.

Mean Squared Error (MSE)

Recall that for predicted values ŷ and true values y, MSE is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

In our implementation, the gradient of MSE with respect to the network output ŷ is:

∂MSE

∂ŷ
=

2

n
(ŷ − y)

This is exactly what we see in the implementation’s backward method. The factor of 2 comes from the

derivative of the square term, and the division by y.shape[0] normalizes by the batch size.

Negative Log-Likelihood (NLL)

Recall that for a classification task with C classes, given predicted probabilities ŷ and true labels y (one-hot

encoded):

NLL = − 1

n

n∑
i=1

C∑
c=1

yi,c log(ŷi,c)

Additionally, the implementation cleverly combines NLL with log-softmax activation in the output layer.
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3 TESTING

This combination implements the common softmax + NLL loss pattern used in classification tasks. The

log-softmax activation:

log(softmax(zi)) = zi − log

∑
j

exp(zj)


has better numerical stability than separate softmax and log operations.

3 Testing

3.1 Weight Initialization

Due to the strong influence weight initialization has on the model’s training and eventual accuracy, we

experimented with some different ways to initialize the weights for each case. As a general strategy, we

initialized all the weights to values uniformly selected at random from values between -1 and 1. For our test

cases using the data-driven model (see Section 4.2) and the handwritten number image identification (see

Section 4.3) we experimented with scaling these initial values and observed improvements in performance.

For both cases we tested scaling the weight initialization by 0.5 and improved results in both test cases.

We hypothesize that the improved performance must have been a result of initializing the weights in a way

that we are closer to the global minimum of our loss function. We did not perform an extensive exploration

or further analysis, which could be interesting for future work.

3.2 Handling Exploding Gradients

During out initial training of the handwritten number image identification, we observed some unexpected

behavior, which we later identified as being a result of exploding gradients. We observed that our model

was not updating its performance, and upon investigating, realized that after a few epochs, the gradients

overflowed and were converted to NaNs. To alleviate this problem, we decided to explore using the gradient

clipping technique.

Although there exist more advanced methods for determining a gradient clipping threshold, we took

a naive approach, due to time constraints, and set a threshold of -3, and 3. This greatly improved the

performance of our model. We did not perform an extensive exploration or further analysis, however, this

could be interesting for future work.

3.3 Simple Regression

Our task was to train our feedforward neural network to approximate the sine function over the rane of

[−3, 3]. The objective of this testing task was to produce a model capable of accurately predicting the sine

values for a given input x

3.3.1 Neural Architecture

The neural network consists of three layers. The input layer contains 1 node for the input x dimension. The

first hidden layer has 25 nodes and utilizes the ReLu activation function and its derivative to capture the

non-linear characteristics of the sine function. The output layer consists of 1 node that employs the identity

activation function, production continuous output values representing the predicted sine value.
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3.4 Data-Driven Model 3 TESTING

3.3.2 Training

We generated random samples of x uniformly distributed in the range of [−3, 3] and computed their corre-

sponding sine values to create our training dataset.

To train the mdoel, we used the Mean Squared Error (MSE) as our loss function, which measures the

average squared distance between the predicted values and the actual sine values.

3.3.3 Forward Propagation

During forward propagation, we computed the output of each layer in sequence, applying the activation

functions to obtain the final predicted values. This invloved calculating the linear combination of inputs and

weights for each neruron, as well as applying the activation function (ReLU for hidden layers, and identity

for the output layer) to obtain the neuron’s output.

3.3.4 Backward Propagation

We implemented the backward propagation algorithm to compute the gradients of the loss function concern-

ing the weights associated with the edges of the model. This process included calculating the gradient of the

loss function with respect to the output, and propagating these gradients backward through the network,

adjusting the weights based on the learning rate and calculated gradient.

3.3.5 Optimization

We trained the model for 1000 epochs with a learning rate of 0.01. The training process iteratively updates

the weights of the network’s edges based on the calculated gradients of the loss function, converging toward

an optimal solution.

3.3.6 Evaluation

After training, we evaluated the model’s performance by comparing the predicted sine values against the

true values. We visualized the results using Matplotlib, plotting both the true data points and the FNN’s

predictions. This visual assessment allowed us to gauge the accuracy of our approximation and confirm that

the model effectively learned the underlying pattern of the sine function.

3.4 Data-Driven Model

Our task was to train our feed forward neural network to approximate the one-step (0.5 s) reachability

relation of the Van der Pol system whose ODE is

ẋ1 = x2, ẋ2 = −x1 + (1− x2
2)x2

The goal of this testing task is to produce a relation in our network as similar to the Van der Pol system.

3.4.1 Neural Architecture

The neural network consists of four layers. The first, input layer contains 2 nodes, one for x1 and one for

x2. We have two hidden layers, each with 64 input and output nodes. Our input and hidden layers use the
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3.5 Handwriting Numbers 4 RESULTS

RELU activation function. Our final, output layer, has 2 nodes and uses an identity function. Our output

contains predicted next state values for x1 and x2 of the Van der Pol oscillator.

3.4.2 Training

We compiled the batched data from the Pytorch data loader into numpy arrays for training. Because our

output layer consisted of 10 nodes, we one-hot encoded the labels in our data.

To train, we used a negative log likelihood function and mini-batch stochastic gradient descent as our

optimizer. We trained over 100 epochs using a learning rate of 0.001 and a mini-batch size of 25 samples.

After generating X and Y as PyTorch tensors, we convert them to Numpy arrays. (X np and Y np)

To train, we used a mean squared error loss function and mini-batch stochastic gradient descent as our

optimizer. We trained over 100 epochs using a learning rate of 0.01 and a mini-batch size of 25 samples.

3.5 Handwriting Numbers

For Case 3, our task was to train the feed-forward neural network to recognize handwritten numbers from

the MNIST dataset. The MNIST dataset is a collection of handwritten digit images, 0-9. We obtained the

data using PyTorch. Our primary objective for this case was to train our neural network with the optimal

set of hyperparameters, such as learning rate, epochs, and batch size, to correctly identify the handwritten

digit in a given image.

3.5.1 Neural Architecture

The neural network consists of four layers. The first, input layer contains 784 (28 × 28) nodes for each of

the pixels in the image. We have two hidden layers, each with 64 input and output nodes. Our input and

hidden layers use the RELU activation function. Our final, output layer, has 10 nodes and uses a log-softmax

function. Our output contains the log likelihood that our input belongs to each class (digits 0-9).

3.5.2 Training

We compiled the batched data from the Pytorch data loader into numpy arrays for training. Because our

output layer consisted of 10 nodes, we one-hot encoded the labels in our data.

To train, we used a negative log-likelihood loss function and mini-batch stochastic gradient descent for

our optimizer. We obtained our best results training the network over 100 epochs, with a learning rate of

0.001 and a mini-batch size of 25 samples.

4 Results

4.1 Simple Regression

Due to the influence of weight initialization on the final training and testing results, we compare the results

of three separate runs to understand what the “average” behavior of our model is. Table 1 contains the

initial and final mean squared errors for three separate runs. We plot the corresponding predictions against

the true value in Figure 2.

As can be observed in the table, the initial mean squared error varies widely by the initial weights. We

are able to achieve a very small final mean squared error, less than 0.001, for all three runs.
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4.2 Data-Driven Model 4 RESULTS

Iteration Initial MSE Final MSE

1 24.26 0.00037
2 67.13 0.00058
3 4.73 0.00071

Table 1: MSE for three different iterations.

((a)) Run 1 ((b)) Run 2 ((c)) Run 3

Figure 2: Comparing results of different runs to observe impact of initialization on training.

4.2 Data-Driven Model

In the data-driven model, we were asked to use a mini-batch stochastic gradient descent for optimization.

To observe the impact the optimization method has on our training, we compared the results of training

with the standard gradient descent algorithm, and with stochastic gradient descent. Figure 3 compares the

results of training using the two different algorithms. As can be observed, the stochastic gradient descent

model results in markedly better predictions.

((a)) Regular Gradient Descent ((b)) Stochastic Gradient Descent

Figure 3: Comparing results of different runs to observe impact of optimization method on training.

We compare the results of three separate runs to understand what the “average” behavior of our model is.

Table 2 contains the initial and final mean squared errors for three separate runs. We plot the corresponding

predictions against the true value in Figure 4.

As can be observed in the table, we were able to achieve a significant decrease in the mean squared error

for all three runs. We also achieved similar magnitudes of error across all three iterations.
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4.2 Data-Driven Model 4 RESULTS

Iteration Initial MSE Final MSE

1 0.0057 7.17e-05
2 0.0050 5.46e-05
3 0.0058 5.70e-05

Table 2: MSE for three different iterations.

((a)) Run 1 ((b)) Run 2 ((c)) Run 3

Figure 4: Comparing results of different runs to observe impact of initialization on training.
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4.3 Handwriting Numbers 5 DISCUSSION

4.3 Handwriting Numbers

Table 3 compares the initial accuracy and final accuracy of our model across three separate runs. Although

we started with a low, approximately 10% accuracy, we were able to achieve a fairly high accuracy at

approximately 90% of correct classifications.

We also compared the rate of accuracy improvement across the 100 epochs that we trained our model,

seen in figure 6. All three runs had similar rates of growth, and appeared to converge to similar values.

Figure 5 gives an example of a correct and incorrect classification result.

((a)) Correctly Classified ((b)) Incorrectly Classified

Figure 5: Examples of classification results.

Iteration Initial Accuracy Final Testing Accuracy

1 11.97% 90.71%
2 9.61% 90.60%
3 5.06% 89.90%

Table 3: Accuracy for three different iterations.

Figure 6: Comparing the test accuracy over epochs of training for three different runs.

5 Discussion

Overall, in our experiments we achieved relatively good training success and began to explore different

techniques for troubleshooting and improving our models.
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In the simple regression test case we observed the significant impact of the weight initialization in the

initial MSE. However, we were able to achieve consistent final MSEs across different runs.

Testing the data-driven model highlighted the effectiveness of the stochastic gradient descent method

compared to the standard gradient descent model. We hypothesize that the optimization step is performed

on a random variety of samples, which may make it more robust compared to the standard gradient descent,

and less likely to overfit.

We also experimented with initializing our weights to a smaller range, -0.5,0.5, which improved our model.

A consistent theme we observed is the importance of weight initialization.

The task of identifying handwritten numbers from the MNIST data was the most complex, and led us to

explore methods for handling exploding gradients. Prior to implementing gradient clipping, we noticed our

model failed to learn. After we added the gradient clip, our model was able to achieve higher than expected

accuracy in training. We implemented a rather naive approach to gradient clipping, but believe it would be

worth further exploration so we can understand how best to incorporate this method in our model.

6 Contributions

Initially, in the first half of the project, our team contributions were divided evenly across the FNN and

Layer classes. This was a straightforward process once we decided how we wanted to structure the neural

network. Once we got to the testing stage, our responsibilities became mixed and our contributions crossed

over with each other.

Jyrus: Jyrus was initially responsible for setting up and defining the structure of the project, including

setting up the Git repo and the report. He then transitioned to implementing both the standard

and stochastic gradient descent algorithms in the FNN class. Additionally, Jyrus took inspiration from

Bethany’s contributions, as well as handwritingnumbers.py, and assisted testing for the most optimal

hyperparameters in Case 3.

Robert: Robert was responsible for developing the initial object-oriented design diagram, as well as updat-

ing it to reflect the current state of the model with the help of Jyrus, Bethany and Gabe. This diagram

provides high-level insight into the instances (objects) and their relationships, illustrating how data

will interact with the system. Robert also helped implement the first case, simple regression, using the

structure (methods, parameters etc.) defined by Gabe and Bethany. He consulted Professor Chen on

the best approach for bias absorption into the weight matrix, translating this guidance into effective

code. Robert also implemented activation functions and their derivatives, except for the log-softmax

derivative, which was completed by Jyrus. Additionally, he addressed challenges in the layer class

related to forward and backward propagation, resolving issues with bias handling and dimensionality.

Bethany: Bethany created the initial scripts to setup and run the three test cases and generate plots to

show the training results. She also assisted the rest of the team with designing the neural network

so that the bias was absorbed. When we faced challenges with mismatching sizes in some of the test

cases, Bethany helped identify and fix the problems. When faced with unexpected behavior during

the handwritten numbers testing, Bethany identified the exploding gradient issue and proposed using

gradient clipping as a solution. Gabe initially experimented with scaling the weight initialization and

Bethany helped identify how the weight scaling impacted performance.
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7 CONCLUSION

Gabriel: Gabriel helped define the project structure by specifying the input parameters for each func-

tion. He implemented both backward functions for Backpropagation, debugging them with the help of

Robert. He, like Jyrus, identified the need for one-hot encoding in the Handwriting Numbers test, and

plotted the Van der Pol set with Bethany’s data preparation. He helped handle exploding gradients

with the rest of the team and worked to find optimal hyperparameters for Case 2 (Van der Pol).

7 Conclusion

In this project, we successfully designed and implemented a feedforward neural network, the backpropagation

algorithm, gradient descent, and mini-batch stochastic gradient descent. We also demonstrated its ability

to perform supervised learning tasks such as regression and classification using three different datasets.

For all test cases, our model was able to achieve decent performance, which we was partly a result of a

naive exploration of different strategies to initialize our weights, and address exploding gradients. Overall,

this project allowed us to further develop our understanding of neural network fundamental concepts and

algorithms.
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Appendix

1 import numpy as np

2

3 from layer import Layer

4

5 class FNN:

6 """

7 A Feed -Forward Neural Network.

8 """

9

10 # Initialize the network with a list of layers

11 def __init__(self , layers):

12 self.layers = layers

13

14 # Perform forward propagation through all layers

15 def forward(self , X):

16 for layer in self.layers:

17 X = layer.forward(X)

18 return X

19

20 """

21 Calculate gradients for all layers.

22 X: Input data

23 y: True labels

24 y_pred: Predicted output from the forward pass

25 loss_func : Loss function (’mse ’ or ’nll ’)

26 """

27 def backward(self , y, y_pred , loss_func=’mse’):

28 if loss_func == ’mse’:

29 dL_dout = 2 * (y_pred - y) / y.shape [0]

30 elif loss_func == ’nll’:

31 dL_dout = y_pred - y

32 gradients_W = []

33 # Proceeding backward through the layers , add each new calculation to the front

34 # to create the gradients array

35 for layer in reversed(self.layers):

36 grad_W , dL_dout = layer.backward(dL_dout)

37 gradients_W.insert(0, grad_W)

38 return gradients_W

39

40 # Update weights and biases using gradient descent

41 def gd(self , gradients_W , learning_rate):

42 for layer , grad_W in zip(self.layers , gradients_W):

43 layer.weights -= learning_rate * grad_W

44

45

46 def sgd(self , X, y, batch_size , learning_rate , loss_func=’mse’):

47 indices = np.arange(X.shape [0])

48 np.random.shuffle(indices)

49

50 for start_idx in range(0, X.shape [0] - batch_size + 1, batch_size):

51 batch_indices = indices[start_idx:start_idx + batch_size]

52 X_batch = X[batch_indices]

53 y_batch = y[batch_indices]

54

55 # Forward pass

56 y_pred = self.forward(X_batch)

57

58 # Backward pass

59 gradients = self.backward(y_batch , y_pred , loss_func)

60

61 # Update weights

62 for layer , gradient in zip(self.layers , gradients):
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63 layer.weights -= learning_rate * gradient

64

65 # Train the network using forward and backward propagation

66 def train(self , X, y, learning_rate , epochs):

67 for _ in range(epochs):

68 y_pred = self.forward(X)

69 gradients_W = self.backward(y,y_pred)

70 self.gd(gradients_W , learning_rate)

71 # Train the network using stochastic gradient descent

72 def trainsgd(self , X, y, learning_rate , epochs , batch_size , loss_func=’mse’):

73 for epoch in range(epochs):

74 self.sgd(X, y, batch_size , learning_rate , loss_func)

75

76 # Calculate and print loss for monitoring

77 y_pred = self.forward(X)

78 loss = self._calculate_loss(y, y_pred , loss_func)

79 print(f"Epoch {epoch + 1}/{ epochs}, Loss: {loss}")

80

81 def _calculate_loss(self , y, y_pred , loss_func):

82 if loss_func == ’mse’:

83 return np.mean(( y_pred - y) ** 2)

84 elif loss_func == ’nll’:

85 return -np.mean(y * np.log(y_pred + 1e-8))

86 else:

87 raise ValueError("Unsupported loss function")

Listing 1: fnn.py

1 import random

2

3 import numpy as np

4

5 class Layer:

6 """

7 A layer in the Feedforward Neural Network (FNN).

8 """

9

10 # Randomly initialize weights and biases

11 def __init__(self , n_input , n_output , activation=’relu’):

12 random.seed (2400)

13 self.weights = np.random.uniform(-1, 1, (n_input+1, n_output))

14 self.activation_function = activation

15 self.n_input = n_input

16

17 def forward(self , X):

18 X = np.hstack ([X, np.ones((X.shape[0], 1))])

19

20 self.z = np.dot(X, self.weights)

21 self.a = self.activate(self.z)

22 self.input_data = X

23

24 return self.a

25

26 # Activation functions

27 def activate(self , z):

28 activations = {

29 ’relu’: lambda z: np.maximum(0, z),

30 ’sigmoid ’: lambda z: 1 / (1 + np.exp(-z)),

31 ’id’: lambda z: z,

32 ’sign’: lambda z: np.sign(z),

33 ’tanh’: lambda z: np.tanh(z),

34 ’hard tanh’: lambda z: np.clip(z, -1, 1),

35 ’logsoftmax ’: lambda z: z - np.log(np.sum(np.exp(z - np.max(z, axis=1, keepdims=True)),

axis=1, keepdims=True) + 1e-8)
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36 }

37

38 return activations[self.activation_function ](z)

39

40 # Derivatives of activation functions

41 """

42 If an error arises using the ’sign ’ activation function , it is because the derivative is

undefined at z = 0. (Will return NaN)

43 """

44 def activation_deriv(self , z):

45 derivs = {

46 ’relu’: lambda z: np.where(z > 0, 1, 0),

47 ’sigmoid ’: lambda z: (sig := 1 / (1 + np.exp(-z))) * (1 - sig),

48 ’id’: lambda _: np.ones_like(z),

49 ’sign’: lambda z: np.zeros_like(z), # Derivative undefined at z = 0

50 ’tanh’: lambda z: 1 - np.tanh(z) ** 2,

51 ’hard tanh’: lambda z: np.where(np.abs(z) <= 1, 1, 0),

52 # logsoftmax derivative here

53 ’logsoftmax ’: lambda z: np.exp(z - np.max(z, axis=1, keepdims=True)) / (

54 np.sum(np.exp(z - np.max(z, axis=1, keepdims=True)), axis=1, keepdims=True) +

1e-8)

55 }

56

57 return derivs[self.activation_function ](z)

58

59 def backward(self , dL_dout):

60 dL_dout = np.nan_to_num(dL_dout)

61 activation_deriv = self.activation_deriv(self.z)

62 dL_dout *= activation_deriv

63 # partial derivative of the loss w.r.t. the weights

64 grad_W = np.dot(self.input_data.T, dL_dout)

65 # accumulation of partial derivative of the loss for each layer

66 dL_din = np.dot(dL_dout , self.weights.T)

67

68 # Remove the bias

69 dL_din = dL_din[:, :-1]

70

71 grad_W = np.clip(grad_W , -3, 3)

72

73 return grad_W , dL_din

Listing 2: layer.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 from layer import Layer

5 from fnn import FNN

6

7 # Generate Data

8 X = np.random.uniform(-3, 3, 500).reshape(-1, 1) # Reshape X to be (n_samples , 1)

9 y = np.sin(X)

10

11 # Create Layers

12 layer1 = Layer(n_input=1, n_output =30, activation=’relu’) # Input layer with 1 feature (x)

13 layer2 = Layer(n_input =30, n_output =30, activation=’relu’) # Hidden layer with 10 neurons

14 layer3 = Layer(n_input =30, n_output=1, activation=’id’) # Output layer with 1 neuron ( regression

output)

15

16 # Create FNN

17 fnn = FNN(layers =[layer1 , layer2 , layer3 ])

18

19 # Train

20 learning_rate = 0.01
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21 epochs = 1000

22 fnn.train(X, y, learning_rate , epochs)

23

24 y_pred = fnn.forward(X)

25

26 plt.figure ()

27 plt.scatter(X, y, label=’True Data’)

28 plt.scatter(X, y_pred , color=’red’, label=’FNN Predictions ’)

29 plt.title("FNN Approximation of sin(x)")

30 plt.legend ()

31 plt.show()

Listing 3: case1.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.integrate import odeint

4 import torch

5

6 from layer import Layer

7 from fnn import FNN

8

9 # Generate Data - this code comes from the vanderpol .py file

10 # from lecture

11 def ode_model(x, t):

12 return [x[1], -x[0] + (1 - x[0]**2)*x[1]]

13

14 def Phi(x):

15 t = np.linspace(0, 0.05, 101)

16 sol = odeint(ode_model , x, t)

17 return sol[-1]

18

19 # compute the samples

20 # X is a set of samples in a 2D plane

21 # Y consists of the corresponding outputs of the samples in X

22

23 N = 101 # number of samples in each dimension

24 samples_x1 = torch.linspace(-3, 3, N)

25 samples_x2 = torch.linspace(-3, 3, N)

26

27 X = torch.empty ((0,2))

28

29 for x1 in samples_x1:

30 for x2 in samples_x2:

31 sample_x = torch.Tensor ([[x1,x2]])

32 X = torch.cat((X, sample_x))

33

34 Y = torch.empty ((0,2))

35 for x in X:

36 y = Phi(x)

37 sample_y = torch.Tensor ([[y[0],y[1]]])

38 Y = torch.cat((Y, sample_y))

39

40 # Plot Data

41 X_np = X.numpy ()

42 Y_np = Y.numpy ()

43

44 # Pre -Process Data

45 # X = torch.cat ((X, torch.ones(X.shape [0], 1)), dim =1)

46 print(X.shape , Y.shape)

47

48 # Create Layers

49 layer1 = Layer(n_input=2, n_output =64, activation=’relu’)

50 layer2 = Layer(n_input =64, n_output =64, activation=’relu’)
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51 layer3 = Layer(n_input =64, n_output =64, activation=’relu’)

52 layer4 = Layer(n_input =64, n_output=2, activation=’id’)

53

54 # Create FNN

55 fnn = FNN(layers =[layer1 , layer2 , layer3 , layer4 ])

56

57 # Train

58 learning_rate = 0.01

59 epochs = 1000

60 #fnn.train(X_np , Y_np , learning_rate , epochs)

61 fnn.trainsgd(X_np , Y_np , learning_rate , epochs , 25, "mse")

62

63 x0 = np.array ([1.25 , 2.35])

64 #Predict

65 Y_pred = fnn.forward(X_np)

66

67 plt.figure(figsize =(8, 8))

68 for i in range (150):

69 y = Phi(x0)

70 plt.plot(y[0], y[1], ’b.’)

71 x0 = y

72

73 x0 = np.array ([1.25 , 2.35])

74 for i in range (150):

75 y_pred = fnn.forward(x0.reshape(1, -1))

76 plt.plot(y_pred[0, 0], y_pred[0, 1], ’r.’)

77 x0 = y_pred.flatten ()

78

79 plt.xlim([-3, 3])

80 plt.ylim([-3, 3])

81 plt.xlabel(’$x_1$’)
82 plt.ylabel(’$x_2$’)
83 plt.title(’Van der Pol Oscillator ’)

84 plt.grid(True)

85 plt.show()

Listing 4: case2.py

1 import numpy as np

2 import torch

3 from torch.utils.data import DataLoader

4 from torchvision import transforms

5 from torchvision.datasets import MNIST

6 import matplotlib.pyplot as plt

7

8 from layer import Layer

9 from fnn import FNN

10

11

12 def get_data_loader(is_train):

13 to_tensor = transforms.Compose ([ transforms.ToTensor ()])

14 data_set = MNIST("", is_train , transform=to_tensor , download=True)

15 return DataLoader(data_set , batch_size =1000, shuffle=True)

16

17

18 def evaluate(test_data , net):

19 n_correct = 0

20 n_total = 0

21 for batch_X , batch_y in test_data:

22 batch_X = batch_X.view(batch_X.shape[0], -1).numpy ()

23 batch_y = batch_y.numpy ()

24

25 outputs = net.forward(batch_X)

26 predicted = np.argmax(outputs , axis =1)
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27 n_correct += (predicted == batch_y).sum()

28 n_total += batch_y.shape [0]

29

30 return n_correct / n_total

31

32

33 # Create network

34 input_size = 28 * 28

35 hidden_size = 64

36 output_size = 10

37

38 layer1 = Layer(input_size , hidden_size , activation=’relu’)

39 layer2 = Layer(hidden_size , hidden_size , activation=’relu’)

40 layer3 = Layer(hidden_size , hidden_size , activation=’relu’)

41 layer4 = Layer(hidden_size , output_size , activation=’logsoftmax ’)

42

43 net = FNN(layers =[layer1 , layer2 , layer3 , layer4 ])

44

45 # Get data

46 train_data = get_data_loader(is_train=True)

47 test_data = get_data_loader(is_train=False)

48

49 # Initial accuracy

50 print("Initial accuracy:", evaluate(test_data , net))

51

52 # Training

53 learning_rate = 0.001

54 epochs = 100

55 batch_size = 25

56

57 # Prepare the entire training dataset

58 X_train = []

59 y_train = []

60 for batch_X , batch_y in train_data:

61 X_train.append(batch_X.view(batch_X.shape [0], -1).numpy())

62 y_train.append(batch_y.numpy())

63

64 X_train = np.concatenate(X_train)

65 y_train = np.concatenate(y_train)

66

67 # Convert labels to one -hot encoding

68 y_train_one_hot = np.zeros (( y_train.size , output_size))

69 y_train_one_hot[np.arange(y_train.size), y_train] = 1

70

71 # Train using SGD

72 loss_func = ’nll’

73 for epoch in range(epochs):

74 net.sgd(X_train , y_train_one_hot , batch_size , learning_rate , loss_func)

75

76 # Evaluate after each epoch

77 accuracy = evaluate(test_data , net)

78 print(f"Epoch {epoch + 1}/{ epochs}, Accuracy: {accuracy :.4f}")

79

80 # Visualize some predictions

81 for n, (x, _) in enumerate(test_data):

82 if n > 5:

83 break

84

85 x_flat = x[0]. view(-1).numpy()

86 pred = np.argmax(net.forward(x_flat.reshape(1, -1)))

87

88 plt.figure(n)

89 plt.imshow(x[0]. view(28, 28), cmap=’gray’)

90 plt.title(f"Prediction: {pred}")

91
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92 plt.show()

Listing 5: case3.py

Design Diagram
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