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2 CNN ARCHITECTURE AND IMPLEMENTATION

1 Introduction

1.1 Project Overview

This project presents our implementation of the LeNet-5 architecture, focusing on understanding the fun-

damental structure and training processes of Convolutional Neural Networks (CNNs). Built from scratch

using only NumPy for core computations, our implementation encompasses the complete LeNet-5 structure

with two convolutional layers (using ReLU activations), two max pooling layers, and a fully connected neural

network with two hidden layers and one output layer.

Our implementation is distinguished by its detailed attention to core CNN components, particularly in

the convolutional layers where we’ve implemented 3D convolutions with padding in the first two dimensions.

The first convolutional layer employs 6 filters (each 5×5×k, where k represents input image color channels),

while the second layer utilizes 16 filters (each 5 × 5 × 6). Both max pooling layers are implemented with

a 2 × 2 kernel size and stride of 2, maintaining the classic LeNet-5 architecture while adapting it for both

MNIST and CIFAR-10 datasets.

2 CNN Architecture and Implementation

2.1 LeNet-5 Structure Overview

Our implementation follows the classic LeNet-5 architecture, modified to handle both grayscale (MNIST)

and RGB (CIFAR-10) inputs through an adaptable input channel parameter. The network consists of a

sequence of convolutional, pooling, and fully connected layers arranged in a feed-forward structure.

The complete network architecture can be described as:

1. Input Layer: (batch size× channels× 32× 32)

2. First Convolutional Block:

– Conv1: 6 filters with 5× 5 kernel, stride 1

– ReLU activation

– MaxPool1: 2× 2 kernel, stride 2

3. Second Convolutional Block:

– Conv2: 16 filters with 5× 5 kernel, stride 1

– ReLU activation

– MaxPool2: 2× 2 kernel, stride 2

4. Fully Connected Layers:

– FC1: 400 → 120 with ReLU

– FC2: 120 → 84 with ReLU

– FC3: 84 → 10 (output layer)
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2.2 Data Structures and Class Implementation 2 CNN ARCHITECTURE AND IMPLEMENTATION

2.2 Data Structures and Class Implementation

2.2.1 CNN Class Design

Our implementation utilizes a modular class structure for each layer type. The convolutional layer imple-

mentation is particularly noteworthy:

1 class Conv3d:

2 def __init__(self , in_channels , out_channels , kernel_size , stride , padding):

3 self.filters = np.random.uniform(low=-1, high=1,

4 size=( out_channels , in_channels , kernel_size , kernel_size)) / (kernel_size * kernel_size)

5 self.biases = np.ones(out_channels)

This design enables efficient handling of 3D convolutions while maintaining clear separation of concerns.

2.2.2 Layer Representations

The forward propagation through the network is implemented with careful attention to dimensionality:

1. Convolutional Operation: For an input volume X and filter F , the convolution operation is defined

as:

Yi,j =

C−1∑
c=0

M−1∑
m=0

N−1∑
n=0

Xc,i+m,j+n · Fc,m,n + b

1 def conv3d(self , input , filters , biases , stride=1, padding =0):

2 # Shape calculations

3 batch_size , input_channels , input_height , input_width = self.input.shape

4 num_filters , _, kernel_height , kernel_width = filters.shape

5 out_height = (input_height - kernel_height) // stride + 1

6 out_width = (input_width - kernel_width) // stride + 1

7

8 output = np.zeros((batch_size , num_filters , out_height , out_width))

9 # Convolution implementation

10 # ...

There are two operations involved in the convolution, conv2d and conv3d.

Conv2d convolves a single 2D input channel with a single 2d kernel. It does this by moving the kernel

across the input in steps defined by the stride. At each step the values in each region are multiplied

elementwise, summed together and added to the bias for each kernel. Each result is concatenated into

a feature map.

Conv3d calls conv2d for each of it’s separate channels and corresponding kernel in each filter’s kernel

set and sums them all up together to generate a single 2D feature map for each filter. The output

is 4D, the first dimension for the batch of inputs, the second for the number of filters as each one

produces its own feature map, and the last two for the height and width of each feature map.

2. Max Pooling Operation: The max pooling operation is defined as:

Yi,j = max
0≤m<k,0≤n<k

Xi·s+m,j·s+n

where k is the kernel size and s is the stride.

University of New Mexico 4 CS 4/591, Fall 2024



2.3 Forward Propagation Implementation 3 BACKPROPAGATION ANALYSIS

2.3 Forward Propagation Implementation

Forward propagation is implemented as a sequence of layer-wise operations, with each layer maintaining

its state for backpropagation. The complete forward pass combines convolution, activation, and pooling

operations:

1 def forward(self , x):

2 x = self.c1.forward(x) # First convolution

3 x = self.r1.forward(x) # ReLU activation

4 x = self.s2.forward(x) # Max pooling

5

6 x = self.c3.forward(x) # Second convolution

7 x = self.r3.forward(x) # ReLU activation

8 x = self.s4.forward(x) # Max pooling

9

10 batch_size = x.shape [0]

11 x = x.reshape(batch_size , -1) # Flatten for FC layers

12

13 x = self.fc1.forward(x) # Fully connected layers

14 x = self.fc2.forward(x)

15 x = self.fc3.forward(x)

16 return x

This implementation ensures efficient forward propagation while maintaining all necessary information

for the subsequent backpropagation phase.

3 Backpropagation Analysis

The LeNet-5 Convolutional Neural Network primarily consists of three types of layers: convolution, ReLU

activation, and max-pooling. These layers progressively extract features from the input, which are then

passed through a fully connected feed-forward network for classification output. Backpropagation through

the ReLU activation function is straightforward, as it behaves similarly to the activation functions in tradi-

tional neural networks. The remainder of this section will focus on the backpropagation algorithms for the

convolutional and max-pooling layers, which involve more complex computations.

3.0.1 Convolution Layers

During the backward pass, our goal is to calculate the gradient of the loss with respect to the filters ( ∂L∂F ).

To backpropogate through the convolutional layers we can use the following equation:

∂L

∂F
=

∂L

∂Y

∂Y

∂F

In a convolution layer, the output, Y is computed by convolving the input X with the filter F . To find

how changes in the filter F affect the loss, we treat the output, Y as an intermediate variable and divide the

gradient computation into two parts. First, ∂L
∂Y measures how sensitive the loss is to changes in the ouput of

the convolution. Second, ∂Y
∂F measures how changes in the filter values alter the layer’s output. By linking

these two components together via the chain rule, we can obtain the equation stated above.

The gradient ∂L
∂Y is the derivative of the loss L with respect to the output of the convolutional layer,

and it is given to us as part of the backpropagation process. During the forward pass, the output of the
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3 BACKPROPAGATION ANALYSIS

convolutional layer Y is computed by convolving the input X with the filters F followed by an activation

function such as ReLU

Y = ReLU(X ∗ F + b)

where b represents the bias. This gradient is passed from the next layer in the network, and is used to

update the parameters of the convolutional layer.

The term ∂Y
∂F represents the gradient of the output Y with respect to the filters F in the convolutional

layer. When performing backpropagation, we need to compute how the output changes with respect to

changes in the filter. For each position in the filter applied to the input, the output is computed by ”sliding”

the filter over the input, and computing the dot product at each position. This convolution operation

determines the value of Y for each spatial location. We the value of an output cell, Y, by using the following

equation:

Yij =
H−1∑
m=0

W−1∑
n=0

Xi+m,j+nFm,n

where H and W are the height and width of the filter F .

Since the output Y at a specific position is determined by the convolution operation between the input

X and the filter F , the gradient of Y with respect to F at a particular position is the same as the input X

at that position.

This result is then passed to the ReLU layer, and ReLU activation is applied to each cell in the matrix.

To compute the final gradient of the loss with respect to the filters, ∂L
∂F , we combine the two terms

discussed previously. Here, ∂L
∂Y is passed to the current layer from the next, which tells us how much the

loss changes with respect to the output. ∂Y
∂F is the gradient of the output with respect to the filter, which

is determined by the convolution operation. The gradient ∂Y
∂F at a given location is simply the input X at

that location. So, to calculate ∂L
∂F , we convolve the input X with the gradient of the loss with respect to the

output:

∂L

∂F
= X ∗ ∂L

∂Y

In other words, we take the derivative of the loss from the next layer and convolve it with the input X,

and sum over all positions where the filter was applied. This is how we are able to backpropogate the error

across all convolutional layers. This results in the total gradient of the loss with respect to the filter, whcih

tells us how the filter should be updated to minimize the loss.

3.0.2 Max Pooling Layers

During the backward pass, the purpose of backpropagation in a max pooling layer is to compute the gradient

of the loss with respect to the input of the layer. This information allows earlier layers in the network to

adjust their parameters effectively. When there is no overlap between pools, we simply need to identify

which unit is the maximum value in the pool. During backpropagation, the gradient of the loss with respect

to the max pooling output is propagated only to the stored indices of the maximum values. All other values

in the pooling window receive a gradient of zero.

This process is repeated independently for each channel in the input feature map. The backpropagation

happens separately for each channel, ensuring the gradient for each channel is handled individually while
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still using the same max pooling operation.

1 dL_dinput = np.zeros_like(self.input)

During the forward pass, the indices of the maximum values within each pooling window were stored.

In the backward pass, the gradients from dL dout are propagated only to the positions of these maximum

values

1 max_i , max_j = self.max_indices[b, c, i, j]

2 dL_dinput[b, c, max_i , max_j] += dL_dout[b, c, i, j]

Here, dL dout[b,c,i,j] represents the gradient of the loss with respect to the output of the pooling

layer at a specific location. This gradient is added only to the corresponding position in dL dinput that

matches the stores indices (max i, max j). Because no other positions in the pooling window are updated,

their gradients remain zero.

3.0.3 Integration Across All Layers

In the convolutional layers, backpropagation computes the gradient of the loss with respect to the filters,

which allows the model to learn which features are most important. The error signal is passed from the

next layer, and the filter gradients are computed using the chain rule. In the forward pass, the convolution

produces feature maps by applying filters to the input, and in the backward pass, the gradients are used to

adjust the filter weights to improve feature extraction in the subsequent passes.

ReLU layers introduce non-linearity, which is essential for learning more complex patterns. This mecha-

nism is in place to ensure only relevant features contribute to learning, enabling the model to focus on the

most important patterns in the data.

Max pooling layers serve to downsample the feature maps and retain the most important data by selecting

the maximum value within each pooling window. During backpropagation, the gradients are only propagated

to the positions corresponding the maximum values in each window. In the backward pass, this operation

helps the model retain the most significant features.

Backpropagation across these layers allows the network to adjust its filters and weights effectively, to learn

both simple and complex representations of the input data. As the error is propagated backward through

the network, each layer is able to update its parameters to gradually improve the model’s ability to map

inputs to accurate predictions.

4 Proofs

4.1 Proof 1

Consider:

A proof to clarify that the (3D) size of ∂L/∂F computed by the method taught in our class is always

same as the size of F for each filter F . We assume that the filter size is m×m× k.

Proof. We are given a convolutional filter F of size m×m× k, where:

• m×m represents the spatial dimensions (height × width)

• k represents the number of channels
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We need to prove that ∂L/∂F (the gradient of loss L with respect to filter F ) has these same dimensions.

First, let’s consider our forward pass understanding, as implemented in MaxPool2d.

During the forward pass, we have:

1. The filter that slides across the input image

2. At each position, every filter element is used exactly once

3. The number of times this happens is determined by these formulas:

1 H_out = ((H_in - kernel_size) // stride) + 1

2 W_out = ((W_in - kernel_size) // stride) + 1

These formulas tell us:

• How many output positions we’ll have (H out× W out)

• How many times each filter element will be used

• Each use of a filter element contributes to one output position Yij

Now, let’s consider the gradient computation by the method taught in class.

Recall:

For every element Fij we have that,
∂L

∂Fij
=

∑
k1

∑
k2

∂L

∂Yk1k2

· ∂Yk1k2

∂Fij

where k1 ranges from 1 to H out and k2 ranges from 1 to W out.

Let’s break this down with a concrete example shown in class.

For filter element F11:

∂L

∂F11
=

∂L

∂Y11

∂Y11

∂F11
+

∂L

∂Y12

∂Y12

∂F11
+

∂L

∂Y21

∂Y21

∂F11
+

∂L

∂Y22

∂Y22

∂F11
(1)

=
∂L

∂Y11
X11 +

∂L

∂Y12
X12 +

∂L

∂Y21
X21 +

∂L

∂Y22
X22 (2)

Here, each term represents one time F11 was used in the forward pass, and Xij represents the input value

that F11 was multiplied with. Consequently, ∂L/∂Yij represents how much that output position contributed

to the loss.

Hence, it’s critical to understand that even though this sum has H out×W out terms, we add them all up,

and get ONE final number. This single number then becomes the gradient for position (1, 1) in our filter.

Finally, let’s bring it all together and see how the dimensions are preserved.

For spatial dimensions (m × m), each filter position (i, j) collects its own sum of gradients (Eqn. (1)).

Despite summing many terms, each position gets exactly one final number. This naturally creates an m×m

grid of gradients.

For the channel dimension (k), each channel in the filter operates independently. This means gradients

flow back through each channel separately. This maintains K separate channels in the gradient.

To deepen our understanding, we can think of each filter element as having a “mailbox.” During back-

propagation, it receives “gradient mail” from every output position where it was used. It then adds up all

this “mail” into one final number. This number goes into its position in the final gradient tensor.

Therefore, ∂L/∂F must have dimensions m×m× k because:
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1. Each position (i, j) in each channel gets exactly one gradient value

2. This happens for all m×m positions

3. It happens independently for all k channels

4. This naturally forms an m×m× k tensor of gradients

This is why backpropagation through convolutions preserves the original filter dimensions, ensuring our

gradient updates can be directly applied to the filter during optimization.

4.2 Proof 2

A proof to clarify that the (3D) size of ∂L
∂X computed by the method taught in our class is always the same

as the size of X for any input image X. We assume that the image size is n× n× k.

First we explain the case in 2D:

X has size n×n, convolved with a filter F size f × f . The output Y is size (n− f +1)× (n− f +1). On the

backward pass, we need to make sure that each index of the filter overlaps with each index of ∂L
∂Y . Thus we

pad each side of each dimension of ∂L
∂Y with zeros of size f −1, the front/top padding ensuring the last index

of the filter overlaps with the first index of the input (and everything in between), and the back/bottom

padding ensuring the last index of the input overlaps with the first index of the filter.

Thus the zero-padded-input ∂L
∂Y becomes size ((n−f+1)+(f−1)+(f−1))×((n−f+1)+(f−1)+(f−1)) =

(n+ f − 1)× (n+ f − 1)

Rotating F doesn’t change the size, so F ′ is still size size f × f , so plugging in the dimensions to the

following equation: ∂L
∂X = F ′⊛ ∂L

∂Y , the dimensions of ∂L
∂X become: ((n+f −1)−f +1)× ((n+f −1)−f +1)

which simplify to n× n.

To extend the logic to 3D:

When X has size n × n × k, the filter F has dimensions f × f × k. The convolution operation spans the

entire depth (k) of the input, so no padding is needed along this dimension. The gradient ∂L
∂Y is extended

to size (n + f − 1) × (n + f − 1) × numfilters. Since in the case of multiple filters, they are combined to

update the weights, this also does not affect the dimensions of ∂L
∂X .

When applying F ′ of size f × f × k in the backward pass: ∂L
∂X = F ′ ⊛ ∂L

∂Y , the third dimension of ∂L
∂X

stays k, since the convolution fully spans the depth of the input. The final size of ∂L
∂X is n× n× k, which is

the same as X.

5 Optimizations

In order to improve from Testing accuracies that fluctuated around 10 percent, we made many adjustments

that led to the final implementation. One major change, was to use logsoftmax as the activation function

for the final layer. We did this to make sure that the final output of forward would be a log probability for

Negative Log-Likelihood (NLL) loss. This required changing y pred to exp(y pred) and then subtracting y
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from the result to get dL dout in LeNet’s backward, and using dl dout without multiplying by the activation

derivative in FNN’s layer backward for the final layer to avoid gradient distortion.

6 Experimental Results

6.1 Training Details

In order to improve the performance of our model, we implemented a variety of strategies learned in class

to avoid both exploding and vanishing gradients and to increase stability of our training.

We implemented gradient clipping in the backwards step, clipping the gradients from the fully connected

layers to keep them between (-5,5), and the convolutional layers between (-1,1).

In addition to gradient clipping, we implemented batch normalization. This was implemented similar to

ReLU, in that it was applied after each layer’s forward call. Our BatchNormalization class re-centered and

normalized the data as follows: x = (x−mean)/(std+ 1e− 8).

Finally, to avoid overfitting, we also implemented early stopping. We noticed that once model reached

high training accuracy, it would begin to fluctuate, and would perform poorly in generalizing to the test

dataset. To avoid this, we stop training once the model reaches 95% accuracy on the training dataset.

We used three runs of the model using 10 training epochs to compare the results of training with the

ADAM optimizer and gradient descent. We used a learning rate of 0.01 for the ADAM optimizer; since it

has the ability to decay its learning, we opted for a higher learning rate to start with. For gradient descent,

we used 0.001, since a smaller learning rate may make it less likely to overstep the optimal solution.

6.2 Overview of Datasets

The project utilizes two benchmark datasets to train and test our LeNet5 model implementation: MNIST

and CIFAR-10. To prepare our data, data loader.py is implemented. The data loader.py downloads and

transforms the data using torchvision. Transformation involves: resizing all images to 32x32 pixels, which

specifies height and width of images, to match the input dimension expected by LeNet5, batching data for

training, which is shuffled, and testing, by specified batch size, and converting images to PyTorch tensors and

normalizes the pixel values to the range [0, 1]. The produced data have shapes of (batch size, channel depth,

height, width), where channel depth is 1 and 3 for MNIST and CIFAR-10 respectively. Here is what these

datasets contain:

• MNIST: consists of 60,000 training and 10,000 test grayscale images(channel depth = 1) of handwritten

10 digits(0-9)

• CIFAR-10: consists of 60,000 training and 10,000 test color images(channel depth = 3) of 10 classes

of objects (e.g. airplane, automobile, bird, cat, etc).

6.3 MNIST Dataset

The ADAM optimizer converged much quicker than gradient descent; it reached the stopping point for

training within 4 epochs, as seen in figure 1. It also experienced much more successful generalization in its

training, as demonstrated in figure 2.
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Figure 1: Comparison of Training Accuracies with MNIST for ADAM and Gradient Descent.

Figure 2: Comparison of Testing Accuracies with MNIST for ADAM and Gradient Descent.

6.4 CIFAR-10 Dataset

The CIFAR dataset required more training epochs for ADAM. Both ADAM and GD achieved high training

accuracy, as seen in figure 3 but both methods struggled to generalize their trainings. The difference between

testing accuracy achieved by ADAM and GD was less pronounced with the CIFAR dataset, but ADAM was

slightly better (figure 4).

Figure 3: Comparison of Training Accuracies with MNIST for ADAM and Gradient Descent.
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8 CONCLUSION

Figure 4: Comparison of Testing Accuracies with MNIST for ADAM and Gradient Descent.

7 Discussion

Overall, we were able to achieve high training performance and some generalization for the MNIST dataset,

but struggled to generalize with the CIFAR set. We observed that ADAM is a more robust optimization

method for our model than gradient descent.

Our model struggled to generalize with the CIFAR dataset. This dataset is a more complex dataset

and classification task compared to the MNIST dataset, so this wasn’t an unexpected result. In figure 3 it

appears that ADAM converges around 2 epochs, so a lower early stopping threshold could possibly improve

generalization accuracy.

8 Conclusion

This project successfully implemented the LeNet-5 CNN architecture from scratch using only NumPy, demon-

strating both the capabilities and challenges of fundamental deep learning concepts. The implementation

included complete forward and backward propagation through convolutional layers, max pooling layers,

and fully connected layers, while incorporating critical optimizations such as batch normalization, gradient

clipping, and early stopping.

The comparitive analysis between Adam optimizer and gradient descent revealed Adam’s superior per-

formance in both convergence speed and generalization capability, particularly with the MNIST dataset.

While the model achieved strong performance on MNIST, the more complex CIFAR-10 dataset presented

greater challenges, highlighting the increasing difficulty of image classification tasks with color images and

more diverse object categories.

Through mathematical proofs and practical implementation, this project provided valuable insights into

the core mechanisms of CNNs, establishing a solid foundation for understanding and further experimentation

with deep learning architectures. The results underscore both the power of CNNs in image classification

tasks and the importance of proper optimization techniques in achieving reliable model performance.
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Team Contributions

Jyrus Cadman

Jyrus was responsible for establishing the foundational architecture of the CNN implementation project,

including defining the initial project structure and core source code files. He implemented critical data

structures and developed the MaxPool2d class, which handles the crucial dimensionality reduction in the

LeNet-5 architecture through max pooling operations. His implementation includes efficient forward prop-

agation logic that processes input tensors and maintains proper dimensional transformations between con-

volutional layers. Additionally, he worked on the mathematical proof demonstrating that the gradient of

the loss with respect to a convolutional filter (∂L/∂F ) maintains the same dimensions as the original filter

F , providing theoretical validation for the backpropagation implementation. His work aided the subsequent

implementation of backpropagation through the max pooling layers and integration with the broader CNN

architecture.

Sho Komiyama

Sho was responsible for debugging, creating tests, and setting up essential components to ensure the LeNet

implementation worked correctly. This include preparing data loader for MNIST and CIFAR-10 datasets,

validating the forward pass through the network, and building a basic training sequence. The specific tasks

included: developing multiple tests to verify that the convolution, ReLu, and max-pooling operations were

working correctly. These tests ensures that inputs and outputs had the correct dimensions and the layers

were properly connected in the forward pass. Debugging these layers was done with Gabriel’s assistance.

During the testing, a discrepancy was discovered between the project implementation and the example shown

in Lecture 24, Slide 12. The example appeared to produce a slightly incorrect result, likely because a basis

term was not applied to one element after the convolution. This confirmed that the project’s implementation

was accurate. Also created and tested data loader to ensure that data was correctly loaded and formatted

for use in training. Also designed a basic training process to validate the network functionality. The training

sequence performed correctly during the forward pass but encountered an issue during backpropagation in

the max-pooling layer, which revealed a disconnection between the max-pooling layer and fully connected

layers, which was subsequently fixed by Bethany. Then wrote the section “Overview of Datasets.”

Robert McCourt

Robert was responsible for implementing the backpropagation algorithm for the max pooling layer. Robert

worked with Bethany to integrate each of their implementations of backpropagation, as well as ReLU into the

project. He made modifications to the Conv3D and Conv2D functions and class to address dimensionality and

shape issues, ensuring proper functionality. Robert also tested data preprocessing and conducted preliminary

testing, modifying the forward function in the max pooling class to be more computationally efficient. Robert

also modified the project to easily and dynamically accept the MNIST or CIFAR dataset to streamline testing,

and reflect the accuracy of the model at each epoch. Robert also worked with Gabe on solutions on how to

improve the accuracy of the model, such as using Xavier initialization and proper initialization of the bias,

as well as contributing to the general debugging effort. Robert wrote the section on backpropagation in the

report, incorporating code from both himself and Bethany and using the book as a foundational guide for

his explanations.

University of New Mexico 13 CS 4/591, Fall 2024



8 CONCLUSION

Bethany Peña

Bethany was responsible for implementing the backpropogation algorithm for the convolutional layer, using

the textbook and lecture slides as resources, which she verified with Jyrus and Gabe’s proofs. She and

Robert collaborated on integrating the different backpropogation pieces from the different types of layers

(Convolution, ReLu, Fully Connected) into one function. Sho had pointed out an idea of how to better

integrate the fully connected layers, and Bethany implemented his idea and got the initial forward and

backward functions working. She also worked with Gabe to fix an error in padding the ∂L
∂Y matrix in the

convolution backpropogation function. Additionally, Bethany worked with Gabe on testing and improving

the training process. Bethany implemented approaches learned in class to improve and stabilize training

performance such as the batch normalization layers, and early stopping. She also integrated Robert’s ADAM

optimizer code from the previous project into this project. Bethany compiled the final testing results and

figures.

Gabriel Urbaitis

Gabriel debugged some of Bethany’s backward method in the CNN.py file, identifying the need to not divide

the f-1 padding by 2 in backpropagation, and helping her find where self.input in the Conv3d class was set

incorrectly, leading to a size mismatch when the input dimensions were used for assigning dl/dx. He wrote

the second proof, assisted Sho in testing 2d convolution on the example from slide 12 in lecture 24, and

assisted Sho in testing and identifying bugs in Jyrus’s first implementation of maxpool2d. He helped debug

Sho’s dataloading connection with the network initialization, including testing dimensionality for Cifar and

MNIST. He added the FNN to the project, establishing the link between the CNN with the function for

flattening the outputted last set of feature maps to use as input for the FNN. The FNN was later broken up

by Bethany for ease of use. Gabriel wrote the conv3d, conv2d, forward, and padding functions, though the

padding function was replaced by Robert, for reasons that there hadn’t been time to discuss at submission

time. He also wrote the Conv3d class’s constructor in CNN.py. He made the changes associated with

logsoftmax described in the optimizations section. He wrote the getAccuracy function as well.
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Appendix

Code Listings

1 import numpy as np

2

3 from activations import ReLU , BatchNormalize

4 from CNN import Conv3d , MaxPool2d

5 from FNN.fnn import FNN

6 from FNN.layer import Layer as FFLayer

7

8 class CNN:

9 """

10 Convolutional Neural Network.

11 """

12

13 def __init__(self , input_shape , num_classes):

14 """

15 Initialize the CNN.

16 """

17 channels , height , width = input_shape

18

19 # Use dynamic in_channels for CIFAR (3 channels) or MNIST (1 channel)

20 self.c1 = Conv3d(in_channels=channels , out_channels =6, kernel_size =5, stride=1, padding =0)

21 self.r1 = ReLU()

22 self.b1 = BatchNormalize ()

23 self.s2 = MaxPool2d(kernel_size =2, stride =2)

24

25

26 self.c3 = Conv3d(in_channels =6, out_channels =16, kernel_size =5, stride=1, padding =0)

27 self.r3 = ReLU()

28 self.b3 = BatchNormalize ()

29 self.s4 = MaxPool2d(kernel_size =2, stride =2)

30

31 self.fc1 = FFLayer(n_input =400, n_output =120, activation=’relu’)

32 self.b4 = BatchNormalize ()

33 self.fc2 = FFLayer(n_input =120, n_output =84, activation=’relu’)

34 self.b5 = BatchNormalize ()

35 self.fc3 = FFLayer(n_input =84, n_output=num_classes , activation=’logsoftmax ’)

36

37 self.layers = [self.c1 , self.r1 , self.s2, self.c3, self.r3 , self.s4, self.fc1 , self.fc2 , self

.fc3]

38 self.output = None

39

40 def forward(self , x):

41 """

42 Forward pass for LeNet.

43 """

44 # Transpose input to NCHW format (batch_size , channels , height , width)

45 #x = np.transpose (x, (0, 3, 1, 2))

46

47 # Layer 1: Convolution -> ReLU -> Max Pooling

48 x_conv1 = self.c1.forward(x) # Convolution

49 x = self.r1.forward(x_conv1) # ReLU activation

50 x = self.b1.forward(x)

51 x = self.s2.forward(x) # Max Pooling

52

53 # Save input for backpropagation (only input to the convolution is needed)

54 #self.c1.input = x_conv1

55

56 # Layer 2: Convolution -> ReLU -> Max Pooling

57 x_conv2 = self.c3.forward(x) # Convolution

58 x = self.r3.forward(x_conv2) # ReLU activation

59 x = self.b3.forward(x)
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60 x = self.s4.forward(x) # Max Pooling

61

62 # Save input for backpropagation

63 # self.c3.input = x_conv2

64

65 # Flatten for Fully Connected Layers

66 batch_size = x.shape [0]

67 x = x.reshape(batch_size , -1)

68

69 # Fully Connected Layers

70 x = self.fc1.forward(x)

71 x = self.b4.forward(x)

72 x = self.fc2.forward(x)

73 x = self.b5.forward(x)

74 x = self.fc3.forward(x)

75

76

77 return x

78

79

80

81 def backward(self , y, y_pred , learning_rate , loss_func ="nll"):

82 """

83 Perform backpropagation through all layers of the CNN

84 params:

85 dL_dout: Gradient of the loss with respect to the output of the CNN (shape: batch_size x

num_classes ).

86 learning_rate : Learning rate.

87 """

88 if loss_func == ’mse’:

89 #Regular

90 dL_dout = 2 * (y_pred - y) / y.shape [0]

91 elif loss_func == ’nll’:

92 p = np.exp(y_pred)

93 dL_dout = p - y

94

95 # Feed Forward Layers

96 grad_W , dL_dout = self.fc3.backward(dL_dout)

97 print("Mean abs grad FC3 weights:", np.mean(np.abs(grad_W)))

98 grad_W = np.clip(grad_W , -5, 5)

99 self.fc3.weights -= learning_rate * grad_W

100

101 grad_W , dL_dout = self.fc2.backward(dL_dout)

102 print("Mean abs grad FC2 weights:", np.mean(np.abs(grad_W)))

103 grad_W = np.clip(grad_W , -5, 5)

104 self.fc2.weights -= learning_rate * grad_W

105

106 grad_W , dL_dout = self.fc1.backward(dL_dout)

107 print("Mean abs grad FC1 weights:", np.mean(np.abs(grad_W)))

108 grad_W = np.clip(grad_W , -5, 5)

109 self.fc1.weights -= learning_rate * grad_W

110

111 # Begin CNN layers

112

113 # reshape for max pool?

114 batch_size , original_channels , height , width = self.s4.output.shape

115 dL_dout = dL_dout.reshape(batch_size , original_channels , height , width)

116 dL_dout = self.s4.backward(dL_dout)

117

118 # conv

119 dL_dout , grad_filters , grad_biases = self.c3.backward(dL_dout)

120 grad_filters = np.clip(grad_filters , -1, 1)

121 grad_biases = np.clip(grad_biases , -1, 1)

122 self.c3.filters -= learning_rate * grad_filters

123 self.c3.biases -= learning_rate * grad_biases
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124 print(f"shape of grad filters and biases: {grad_filters.shape}, {grad_biases.shape}")

125

126 # maxpool

127 dL_dout = self.s2.backward(dL_dout)

128

129 # conv

130 dL_dout , grad_filters , grad_biases = self.c1.backward(dL_dout)

131 grad_filters = np.clip(grad_filters , -1, 1)

132 grad_biases = np.clip(grad_biases , -1, 1)

133 self.c1.filters -= learning_rate * grad_filters

134 self.c1.biases -= learning_rate * grad_biases

135

136

137 def backward_adam(self , y, y_pred , t, learning_rate , rho =0.999 , rho_f =0.9, epsilon =1e-8,

loss_func ="nll"):

138 """

139 Perform backpropagation through all layers of the CNN

140 params:

141 dL_dout: Gradient of the loss with respect to the output of the CNN (shape: batch_size x

num_classes ).

142 learning_rate : Learning rate.

143 """

144

145 alpha_t = learning_rate * ((np.sqrt(1 - (rho ** t))) / (1 - (rho_f ** t) + 1e-8))

146 print(f"alpha t {alpha_t}")

147

148 if loss_func == ’mse’:

149 #Regular

150 dL_dout = 2 * (y_pred - y) / y.shape [0]

151 elif loss_func == ’nll’:

152 p = np.exp(y_pred)

153 dL_dout = p - y

154 elif loss_func == "cross_entropy":

155 dL_dout = -np.sum(y * y_pred ) / y.shape [0]

156 # print(dL_dout)

157

158 # Feed Forward Layers

159 grad_W , dL_dout = self.fc3.backward(dL_dout)

160 grad_W = np.clip(grad_W , -5, 5)

161 self.fc3.update_A(grad_W , rho)

162 self.fc3.update_F(grad_W , rho_f)

163 adaptive_step = self.getAdaptiveStep(self.fc3.A,

164 self.fc3.F,

165 alpha_t , rho ,

166 rho_f ,

167 t, epsilon)

168 self.fc3.weights -= adaptive_step

169

170 grad_W , dL_dout = self.fc2.backward(dL_dout)

171 grad_W = np.clip(grad_W , -5, 5)

172 self.fc2.update_A(grad_W , rho)

173 self.fc2.update_F(grad_W , rho_f)

174 adaptive_step = self.getAdaptiveStep(self.fc2.A,

175 self.fc2.F,

176 alpha_t , rho ,

177 rho_f ,

178 t, epsilon)

179 self.fc2.weights -= adaptive_step

180

181 grad_W , dL_dout = self.fc1.backward(dL_dout)

182 grad_W = np.clip(grad_W , -5, 5)

183 self.fc1.update_A(grad_W , rho)

184 self.fc1.update_F(grad_W , rho_f)

185 adaptive_step = self.getAdaptiveStep(self.fc1.A,

186 self.fc1.F,
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187 alpha_t , rho ,

188 rho_f ,

189 t, epsilon)

190 self.fc1.weights -= adaptive_step

191

192 # Begin CNN layers

193

194 # reshape for max pool?

195 batch_size , original_channels , height , width = self.s4.output.shape

196 dL_dout = dL_dout.reshape(batch_size , original_channels , height , width)

197 dL_dout = self.s4.backward(dL_dout)

198

199 # conv

200 dL_dout , grad_filters , grad_biases = self.c3.backward(dL_dout)

201 grad_filters = np.clip(grad_filters , -1, 1)

202 grad_biases = np.clip(grad_biases , -1, 1)

203 self.c3.update_A(grad_filters , rho)

204 self.c3.update_F(grad_filters , rho_f)

205 adaptive_step = self.getAdaptiveStep(self.c3.A,

206 self.c3.F,

207 alpha_t , rho ,

208 rho_f ,

209 t, epsilon)

210 self.c3.filters -= adaptive_step

211 self.c3.biases -= learning_rate * grad_biases

212 print(f"shape of grad filters and biases: {grad_filters.shape}, {grad_biases.shape}")

213

214 # maxpool

215 dL_dout = self.s2.backward(dL_dout)

216

217 # conv

218 dL_dout , grad_filters , grad_biases = self.c1.backward(dL_dout)

219 grad_filters = np.clip(grad_filters , -1, 1)

220 grad_biases = np.clip(grad_biases , -1, 1)

221 self.c1.update_A(grad_filters , rho)

222 self.c1.update_F(grad_filters , rho_f)

223 adaptive_step = self.getAdaptiveStep(self.c1.A,

224 self.c1.F,

225 alpha_t , rho ,

226 rho_f ,

227 t, epsilon)

228 self.c1.filters -= adaptive_step

229 self.c1.biases -= learning_rate * grad_biases

230

231

232 def train(self , input , labels , epochs: int , learning_rate: int = 0.01, optimizer = "gd"):

233 input = (input - 0.5) / 0.5

234 training_accuracy = []

235 for epoch in range(epochs):

236 loss_sum = 0 # accumulated loss within epoch

237 correct = 0 # correctly classified samples

238 total = 0 # total samples

239

240 # Forward pass

241 out = self.forward(input)

242

243 # Convert raw class indices to one -hot encoding

244 if labels.ndim == 1: # If labels are raw class indices

245 num_classes = out.shape [1]

246 labels = np.eye(num_classes)[labels] # Convert to one -hot

247

248 # Backward pass

249 if optimizer == "gd":

250 self.backward(labels , out , learning_rate , loss_func="nll")

251 elif optimizer == "adam":
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252 self.backward_adam(labels , out , epoch+1, learning_rate , loss_func="nll")

253 else:

254 raise ValueError(f"{optimizer} not an available optimizer")

255

256

257 # Calculate predictions and accuracy

258 predictions = np.argmax(out , axis =1)

259 true_labels = np.argmax(labels , axis =1)

260 correct += np.sum(predictions == true_labels)

261 total += labels.shape [0]

262 accuracy = (correct / total) * 100

263

264 loss = -np.mean(np.sum(labels * out , axis =1))

265

266 # Print accuracy after each epoch

267 print(f"Epoch {epoch + 1}/{ epochs}- Loss: {loss :.4f}, Accuracy: {accuracy :.2f}%")

268

269 training_accuracy.append(accuracy)

270

271 if accuracy > 95:

272 print("Reached high enough accuracy")

273 break

274

275 return training_accuracy

276

277

278 def getAccuracy(self , test_loader):

279 correct = 0

280 total = 0

281

282 for idx , test_batch in enumerate(test_loader):

283 test_input , test_labels = test_batch

284 test_input = test_input.numpy()

285 test_labels = test_labels.numpy ()

286

287 # Normalize input

288 test_input = (test_input - 0.5) / 0.5 # Match normalization from training

289

290 # Forward pass

291 out = self.forward(test_input)

292

293 # Predictions

294 predicted_classes = np.argmax(out , axis =1) # Predicted class indices

295 true_classes = test_labels # Directly use 1D array of true class indices

296

297 # Accuracy calculation

298 correct += np.sum(predicted_classes == true_classes)

299 total += test_labels.shape [0]

300

301 # Break early for debugging

302 if idx > 5: # Limit to 5 batches

303 break

304

305 accuracy = correct / total * 100

306 print(f"Test Accuracy: {accuracy :.2f}%")

307 return accuracy

308

309 def clip_gradient(self , gradient , threshold =1.0):

310 norm = np.linalg.norm(gradient)

311 if norm > threshold:

312 scaling_factor = np.clip(threshold / norm , a_min=0, a_max =1.0)

313

314 # Scale the gradient using the factor

315 gradient = gradient * scaling_factor

316
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317 # print(gradient)

318 return gradient

319

320

321 def getAdaptiveStep(self , A, F, alpha_t , rho , rho_f , t, epsilon):

322 A_hat = A * (1 / ((1 - (rho ** t)) + 1e-8))

323 F_hat = F * (1 / ((1 - (rho_f ** t)) + 1e-8))

324 adaptive_step = alpha_t * F_hat / (np.sqrt(A_hat) + epsilon)

325 return adaptive_step

Listing 1: LeNet.py

1 import numpy as np

2 from FNN.layer import Layer

3

4 class Conv3d:

5 """

6 3D Convolutional Layer

7 """

8

9 def __init__(self , in_channels , out_channels , kernel_size , stride , padding):

10 self.in_channels = in_channels

11 self.out_channels = out_channels

12 self.kernel_size = kernel_size

13 self.stride = stride

14 self.padding = padding

15

16 self.filters = np.random.randn(out_channels , in_channels , kernel_size , kernel_size) * 0.01

17 self.biases = np.zeros(out_channels)

18

19 # for adam optimization

20 self.A = np.zeros_like(self.filters)

21 self.F = np.zeros_like(self.filters)

22

23 #print(f" Initialized filters: {self.filters.shape}, biases: {self.biases.shape }")

24

25

26 def pad_matrix(self , input , pad_size):

27 return np.pad(input , ((0, 0), (0, 0), (pad_size , pad_size), (pad_size , pad_size)), mode=’

constant ’)

28

29

30 def forward(self , input):

31 """

32 params:

33 input: 4D input array of shape (batch_size , in_channels , height , width).

34 return:

35 conv3d output

36 """

37 self.input = input

38 print("from forward , input shape: ", input.shape)

39 return self.conv3d(input , self.filters , self.biases , self.stride , self.padding)

40

41 def conv2d(self , input_channel , kernel , bias , stride):

42 """

43 params:

44 input_channel : one of the 2D input channels (height x width).

45 kernel: the associated 2D kernel (height x width).

46 bias: bias for the kernel

47 stride: stride of convolution .

48

49 return:

50 2D output matrix.

51 """
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52

53 input_height , input_width = input_channel.shape

54 kernel_height , kernel_width = kernel.shape

55

56 # output dimensions

57 out_height = (input_height - kernel_height) // stride + 1

58 out_width = (input_width - kernel_width) // stride + 1

59

60

61 output = np.zeros((out_height , out_width))

62

63 # 2D convolution

64 for i in range(out_height):

65 for j in range(out_width):

66 region = input_channel[

67 i * stride:i * stride + kernel_height ,

68 j * stride:j * stride + kernel_width

69 ]

70

71 region = np.clip(region , -1e3, 1e3)

72 kernel = np.clip(kernel , -1e3, 1e3)

73

74 # Perform convolution

75 try:

76 output[i][j] = np.sum(region * kernel) + bias

77 except RuntimeWarning as e:

78 print(f"Overflow in convolution at position ({i}, {j}):", e)

79 print("Region:", region)

80 print("Kernel:", kernel)

81 raise e

82

83 # Debug: Print output of the convolution

84 #print(f" Convolution output shape: {output.shape }")

85

86 return output

87

88 def conv3d(self , input , filters , biases , stride=1, padding =0):

89 """

90 params:

91 input: 4D input array of shape ( batch_size x input_channels x height x width).

92 filters: filters ( num_filters x input_channels x kernel_height x kernel_width ).

93 biases: bias for each filter

94 stride: stride of convolution .

95 padding: padding on height and width.

96

97 return:

98 4D output matrix ( batch_size x num_filters x out_height x out_width ).

99 """

100

101 # print(f"conv3d - input shape: {input.shape }")

102 """

103 if padding > 0:

104 self.input = self. pad_matrix (input , padding)

105 else:

106 self.input = input

107 """

108

109 batch_size , input_channels , input_height , input_width = input.shape

110 num_filters , filter_channels , kernel_height , kernel_width = filters.shape

111

112 # print the input shape

113 # print(f"Input shape: {input.shape }")

114 # print (" batch size: ", batch_size )

115 # print (" input height: ", input_height )

116 # print (" input channels: ", input_channels )
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117 # print (" input width: ", input_width )

118

119 # print(f"Filters shape: {filters.shape }")

120 # print (" num filters: ", num_filters )

121 # print (" filter channels: ", filter_channels )

122 # print (" kernel height: ", kernel_height )

123 # print (" kernel width: ", kernel_width )

124

125 # output dimensions

126 out_height = (input_height - kernel_height + 2 * padding) // stride + 1

127 out_width = (input_width - kernel_width + 2 * padding) // stride + 1

128

129 # Debug: Print calculated output dimensions

130 # print(f" Calculated output dimensions : out_height ={ out_height }, out_width ={ out_width }")

131

132 # output initialization

133 output = np.zeros((batch_size , num_filters , out_height , out_width))

134

135 # 3D convolution

136 for batch in range(batch_size):

137 for filter in range(num_filters):

138 global_output = np.zeros((out_height , out_width))

139 for channel in range(input_channels):

140 # Sum all channels

141 global_output += self.conv2d(

142 input[batch , channel], filters[filter , channel], biases[filter], stride

143 )

144 output[batch , filter] = global_output

145

146 return output

147

148

149 def backward(self , dL_dout):

150 """

151 params:

152 dL_dout: derivative of loss w.r.t output of previous layer

153

154 return:

155 """

156 batch_size , dL_dout_channels , dL_dout_height , dL_dout_width = dL_dout.shape

157 num_filters , in_channels , kernel_height , kernel_width = self.filters.shape

158 dL_db = np.zeros(num_filters)

159

160 # compute dL \ dF

161 dL_df = np.zeros_like(self.filters)

162 for batch in range(batch_size):

163 for filter in range(num_filters):

164 for channel in range(in_channels):

165 dL_df[filter , channel , :,:] = self.conv2d(self.input[batch , channel ,:,:],

166 dL_dout[batch , filter ,:,:],

167 0, # bias is 0 because we don ’t need it here

168 stride=self.stride)

169

170 # computer dL \ dx (this is the part that will be backpropogated )

171 dL_dx = np.zeros_like(self.input)

172 print("input shape ", self.input.shape)

173 for batch in range(batch_size):

174 for filter in range(num_filters):

175 for channel in range(in_channels):

176 # rotate 90 degrees twice

177 rotated_filter = np.rot90(self.filters[filter ,channel ,:,:],

178 k=2,)

179

180 # Add padding to dL_dout to match input size (padding = kernel size - 1)

181 # Slides say "Notice that you need to extend the matrix ."
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182 # print(self.filters[filter ,channel ,: ,:])

183 pad_size = (self.filters.shape [2] - 1) #// 2

184 # print(pad_size)

185 padded_dL_dout = self.pad_matrix(dL_dout , pad_size)

186 # print( padded_dL_dout .shape)

187 dL_dx[batch ,channel ,:,:] = self.conv2d(padded_dL_dout[batch , filter ,:,:],

188 rotated_filter ,

189 0, # bias is zero because we handle is separately

190 stride=self.stride)

191

192 # compute bias gradient

193 for filter in range(num_filters):

194 dL_db[filter] = np.sum(dL_dout[:, filter , :, :])

195

196

197 return dL_dx , dL_df , dL_db

198

199 def update_A(self , grad_filter , rho =0.999):

200 grad_filter = np.clip(grad_filter , -3, 3)

201 num_filters , in_channels , kernel_height , kernel_width = grad_filter.shape

202 for filter in range(num_filters):

203 for channel in range(in_channels):

204 self.A[filter , channel , :, :] = (rho * self.A[filter , channel , :, :]

205 + (1 - rho) * (grad_filter[filter , channel , :,

:]**2))

206

207

208 def update_F(self , grad_filter , rho_f =0.9):

209 grad_filter = np.clip(grad_filter , -3, 3)

210 num_filters , in_channels , kernel_height , kernel_width = grad_filter.shape

211 for filter in range(num_filters):

212 for channel in range(in_channels):

213 self.F[filter , channel , :, :] = (rho_f * self.F[filter , channel , :, :]

214 + (1 - rho_f) * (grad_filter[filter , channel , :,

:]))

215

216

217

218

219 class MaxPool2d:

220 """

221 2D Max Pooling Layer.

222 """

223

224 def __init__(self , kernel_size , stride):

225 self.kernel_size = kernel_size

226 self.stride = stride

227 self.input = None

228 self.max_indices = None # To store indices of max values during forward pass

229

230 def forward(self , input):

231 """

232 Perform max pooling and store argmax indices.

233 """

234 self.input = input

235 batch_size , channels , H_in , W_in = input.shape

236

237 # Calculate the output dimensions

238 H_out = ((H_in - self.kernel_size) // self.stride) + 1

239 W_out = ((W_in - self.kernel_size) // self.stride) + 1

240

241 # Initialize output and indices

242 output = np.zeros((batch_size , channels , H_out , W_out))

243 self.max_indices = np.zeros((batch_size , channels , H_out , W_out , 2), dtype=int)

244
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245 for b in range(batch_size):

246 for c in range(channels):

247 for i in range(H_out):

248 for j in range(W_out):

249 h_start = i * self.stride

250 h_end = h_start + self.kernel_size

251 w_start = j * self.stride

252 w_end = w_start + self.kernel_size

253

254 window = input[b, c, h_start:h_end , w_start:w_end]

255 # Find max and store it

256 max_idx_flat = np.argmax(window)

257 max_idx = np.unravel_index(max_idx_flat , (self.kernel_size , self.kernel_size)

)

258

259 output[b, c, i, j] = window[max_idx]

260 # Store the exact indices in the original input

261 self.max_indices[b, c, i, j, 0] = h_start + max_idx [0]

262 self.max_indices[b, c, i, j, 1] = w_start + max_idx [1]

263

264 self.output = output

265 return output

266

267 def backward(self , dL_dout):

268 """

269 Backpropagation using stored max indices.

270 """

271 batch_size , channels , H_in , W_in = self.input.shape

272 _, _, H_out , W_out = dL_dout.shape

273

274 # Initialize gradient w.r.t input

275 dL_dinput = np.zeros_like(self.input)

276

277 # Directly use the stored max indices

278 for b in range(batch_size):

279 for c in range(channels):

280 for i in range(H_out):

281 for j in range(W_out):

282 max_i , max_j = self.max_indices[b, c, i, j]

283 dL_dinput[b, c, max_i , max_j] += dL_dout[b, c, i, j]

284

285 return dL_dinput

Listing 2: CNN.py

1 import numpy as np

2

3 from FNN.layer import Layer

4

5 class FNN:

6 """

7 A Feed -Forward Neural Network.

8 """

9

10 # Initialize the network with a list of layers

11 def __init__(self , layers):

12 self.layers = layers

13

14 # Perform forward propagation through all layers

15 def forward(self , X):

16 for layer in self.layers:

17 X = layer.forward(X)

18 return X

19

University of New Mexico 24 CS 4/591, Fall 2024



8 CONCLUSION

20 """

21 Calculate gradients for all layers.

22 X: Input data

23 y: True labels

24 y_pred: Predicted output from the forward pass

25 loss_func : Loss function (’mse ’ or ’nll ’)

26 """

27 def backward(self , y, y_pred , loss_func=’mse’):

28 if loss_func == ’mse’:

29 # NewtonCases

30 dL_dout = (y_pred - y) / y.shape [0]

31 #Regular

32 #dL_dout = 2 * (y_pred - y) / y.shape [0]

33 elif loss_func == ’nll’:

34 dL_dout = y_pred - y

35 gradients_W = []

36 # Proceeding backward through the layers , add each new calculation to the front

37 # to create the gradients array

38 for layer in reversed(self.layers):

39 grad_W , dL_dout = layer.backward(dL_dout)

40 gradients_W.insert(0, grad_W)

41 return gradients_W

42

43 # Update weights and biases using gradient descent

44 def gd(self , gradients_W , learning_rate):

45 for layer , grad_W in zip(self.layers , gradients_W):

46 layer.weights -= learning_rate * grad_W

47

48

49 def sgd(self , X, y, batch_size , learning_rate , loss_func=’mse’):

50 indices = np.arange(X.shape [0])

51 np.random.shuffle(indices)

52

53 for start_idx in range(0, X.shape [0] - batch_size + 1, batch_size):

54 batch_indices = indices[start_idx:start_idx + batch_size]

55 X_batch = X[batch_indices]

56 y_batch = y[batch_indices]

57

58 # Forward pass

59 y_pred = self.forward(X_batch)

60

61 # Backward pass

62 gradients = self.backward(y_batch , y_pred , loss_func)

63

64 # Update weights

65 for layer , gradient in zip(self.layers , gradients):

66 layer.weights -= learning_rate * gradient

67

68 # Train the network using forward and backward propagation

69 def train(self , X, y, learning_rate , epochs):

70 for _ in range(epochs):

71 y_pred = self.forward(X)

72 gradients_W = self.backward(y,y_pred)

73 self.gd(gradients_W , learning_rate)

74 # Train the network using stochastic gradient descent

75 def trainsgd(self , X, y, learning_rate , epochs , batch_size , loss_func=’mse’):

76 for epoch in range(epochs):

77 self.sgd(X, y, batch_size , learning_rate , loss_func)

78

79 # Calculate and print loss for monitoring

80 y_pred = self.forward(X)

81 loss = self._calculate_loss(y, y_pred , loss_func)

82 print(f"Epoch {epoch + 1}/{ epochs}, Loss: {loss}")

83

84 def _calculate_loss(self , y, y_pred , loss_func):
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85 if loss_func == ’mse’:

86 return np.mean(( y_pred - y) ** 2)

87 elif loss_func == ’nll’:

88 return -np.mean(y * np.log(y_pred + 1e-8))

89 else:

90 raise ValueError("Unsupported loss function")

Listing 3: fnn.py

1 import random

2

3 import numpy as np

4

5 class Layer:

6 """

7 A layer in the Feedforward Neural Network (FNN).

8 """

9

10 # Randomly initialize weights and biases

11 def __init__(self , n_input , n_output , activation=’relu’):

12 random.seed (2400)

13 self.weights = np.random.randn(n_input+1, n_output) * 0.01

14 self.activation_function = activation

15 self.n_input = n_input

16

17 # for adam

18 self.A = np.zeros_like(self.weights)

19 self.F = np.zeros_like(self.weights)

20

21 def forward(self , X):

22 X = np.hstack ([X, np.ones((X.shape[0], 1))])

23

24 self.z = np.dot(X, self.weights)

25 self.a = self.activate(self.z)

26 self.input_data = X

27

28 return self.a

29

30 # Activation functions

31 def activate(self , z):

32 activations = {

33 ’relu’: lambda z: np.maximum(0, z),

34 ’sigmoid ’: lambda z: 1 / (1 + np.exp(-z)),

35 ’id’: lambda z: z,

36 ’sign’: lambda z: np.sign(z),

37 ’tanh’: lambda z: np.tanh(z),

38 ’hard tanh’: lambda z: np.clip(z, -1, 1),

39 ’logsoftmax ’: lambda z: z - np.log(np.sum(np.exp(z - np.max(z, axis=1, keepdims=True)),

axis=1, keepdims=True) + 1e-8)

40 }

41

42 return activations[self.activation_function ](z)

43

44 # Derivatives of activation functions

45 """

46 If an error arises using the ’sign ’ activation function , it is because the derivative is

undefined at z = 0. (Will return NaN)

47 """

48 def activation_deriv(self , z):

49 derivs = {

50 ’relu’: lambda z: np.where(z > 0, 1, 0),

51 ’sigmoid ’: lambda z: (sig := 1 / (1 + np.exp(-z))) * (1 - sig),

52 ’id’: lambda _: np.ones_like(z),

53 ’sign’: lambda z: np.zeros_like(z), # Derivative undefined at z = 0
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54 ’tanh’: lambda z: 1 - np.tanh(z) ** 2,

55 ’hard tanh’: lambda z: np.where(np.abs(z) <= 1, 1, 0),

56 # logsoftmax derivative here

57 ’logsoftmax ’: lambda z: np.exp(z - np.max(z, axis=1, keepdims=True)) / (

58 np.sum(np.exp(z - np.max(z, axis=1, keepdims=True)), axis=1, keepdims=True) +

1e-8)

59 }

60

61 return derivs[self.activation_function ](z)

62

63 def backward(self , dL_dout):

64 dL_dout = np.nan_to_num(dL_dout)

65 if self.activation_function != ’logsoftmax ’:

66 activation_deriv = self.activation_deriv(self.z)

67 dL_dout *= activation_deriv

68 # partial derivative of the loss w.r.t. the weights

69 grad_W = np.dot(self.input_data.T, dL_dout)

70 # accumulation of partial derivative of the loss for each layer

71 dL_din = np.dot(dL_dout , self.weights.T)

72

73 # Remove the bias

74 dL_din = dL_din[:, :-1]

75

76 grad_W = np.clip(grad_W , -3, 3)

77

78 return grad_W , dL_din

79

80

81 def update_A(self , gradients_W , rho =0.999):

82 gradients_W = np.clip(gradients_W , -3, 3)

83 self.A = rho*self.A + (1 - rho) * (gradients_W ** 2)

84

85 def update_F(self , gradients_W , rho_f =0.9):

86 gradients_W = np.clip(gradients_W , -3, 3)

87 self.F = rho_f * self.F + (1-rho_f) * gradients_W

Listing 4: layer.py

1 import numpy as np

2

3

4 class ReLU:

5 """

6 ReLU Activation Function.

7 """

8

9 def __init__(self):

10 self.x = None

11

12 def forward(self , x):

13 self.x = x

14 # return x if x > 0 else 0

15 return np.maximum(0, x)

16

17 class BatchNormalize:

18 """

19 ReLU Activation Function.

20 """

21

22 def __init__(self):

23 self.x = None

24

25 def forward(self , x):

26 mean = np.mean(x, axis =0)
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27 std = np.std(x, axis =0)

28 x = (x - mean) / (std + 1e-8)

29 return x

Listing 5: activations.py

1 import numpy as np

2 from torchvision import datasets , transforms

3 from torch.utils.data import DataLoader

4

5 import pickle

6

7 from LeNet import CNN

8 # from LeNet5 import LeNet5

9

10 def get_data_loaders(batch_size: int = 64, dataset: str = "mnist"):

11 """

12 Load MNIST or CIFAR -10 datasets and return DataLoaders with resized 32 x32 inputs.

13 :param batch_size : Batch size for DataLoader .

14 :param dataset: Dataset to load (’mnist ’ or ’cifar ’).

15 :return: Train and test DataLoaders for the selected dataset.

16 """

17 if dataset == "mnist":

18 transform = transforms.Compose ([

19 transforms.Resize ((32, 32)),

20 transforms.ToTensor (),

21 transforms.Lambda(lambda x: x.repeat(3, 1, 1)), # Repeat grayscale 3 times

22 ])

23

24 train_data = datasets.MNIST(root=’./data’, train=True , download=True , transform=transform)

25 test_data = datasets.MNIST(root=’./data’, train=False , download=True , transform=transform)

26

27 elif dataset == "cifar":

28 transform = transforms.Compose ([

29 transforms.Resize ((32, 32)),

30 transforms.ToTensor (),

31 ])

32

33 train_data = datasets.CIFAR10(root=’./data’, train=True , download=True , transform=transform)

34 test_data = datasets.CIFAR10(root=’./data’, train=False , download=True , transform=transform)

35

36 else:

37 raise ValueError("Invalid dataset. Choose ’mnist’ or ’cifar ’.")

38

39 train_loader = DataLoader(train_data , batch_size=batch_size , shuffle=True)

40 test_loader = DataLoader(test_data , batch_size=batch_size , shuffle=False)

41

42 return train_loader , test_loader

43

44 if __name__ == "__main__":

45 batch_size = 32

46 epochs = 10

47

48 # dataset = "mnist"

49 dataset = "cifar"

50

51 train_loader , test_loader = get_data_loaders(batch_size=batch_size , dataset=dataset)

52

53 batch = next(iter(train_loader))

54 input_data , label = batch

55 input_data = input_data.numpy()

56 label = label.numpy()

57

58 model = CNN(input_shape =(3, 32, 32), num_classes =10)
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59

60 # adam

61 adam_runs = {}

62 for i in range (3):

63 model = CNN(input_shape =(3, 32, 32), num_classes =10)

64 training_accuracies = model.train(input_data ,

65 label ,

66 epochs ,

67 learning_rate =0.01 ,

68 optimizer="adam")

69

70 test_accuracy = model.getAccuracy(test_loader)

71

72

73 adam_runs[i] = (training_accuracies , test_accuracy)

74

75 with open(f"{dataset}_adam_runs.pkl", "wb") as f:

76 pickle.dump(adam_runs , f)

77

78 # GD

79 gd_runs = {}

80 for i in range (3):

81 model = CNN(input_shape =(3, 32, 32), num_classes =10)

82 training_accuracies = model.train(input_data ,

83 label ,

84 epochs ,

85 learning_rate =0.001 ,

86 optimizer="gd")

87

88 test_accuracy = model.getAccuracy(test_loader)

89

90

91 gd_runs[i] = (training_accuracies , test_accuracy)

92

93 with open(f"{dataset}_gd_runs.pkl", "wb") as f:

94 pickle.dump(gd_runs , f)

Listing 6: data loader.py
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