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2 CNN ARCHITECTURE AND IMPLEMENTATION

1 Introduction

1.1 Project Overview

This project presents our implementation of the LeNet-5 architecture, focusing on understanding the fun-
damental structure and training processes of Convolutional Neural Networks (CNNs). Built from scratch
using only NumPy for core computations, our implementation encompasses the complete LeNet-5 structure
with two convolutional layers (using ReLU activations), two max pooling layers, and a fully connected neural
network with two hidden layers and one output layer.

Our implementation is distinguished by its detailed attention to core CNN components, particularly in
the convolutional layers where we’ve implemented 3D convolutions with padding in the first two dimensions.
The first convolutional layer employs 6 filters (each 5 x 5 x k, where k represents input image color channels),
while the second layer utilizes 16 filters (each 5 X 5 x 6). Both max pooling layers are implemented with
a 2 x 2 kernel size and stride of 2, maintaining the classic LeNet-5 architecture while adapting it for both
MNIST and CIFAR-10 datasets.

2 CNN Architecture and Implementation

2.1 LeNet-5 Structure Overview

Our implementation follows the classic LeNet-5 architecture, modified to handle both grayscale (MNIST)
and RGB (CIFAR-10) inputs through an adaptable input channel parameter. The network consists of a
sequence of convolutional, pooling, and fully connected layers arranged in a feed-forward structure.

The complete network architecture can be described as:
1. Input Layer: (batch_size X channels x 32 x 32)
2. First Convolutional Block:

— Convl: 6 filters with 5 x 5 kernel, stride 1
— ReLU activation
— MaxPooll: 2 x 2 kernel, stride 2

3. Second Convolutional Block:

— Conv2: 16 filters with 5 x 5 kernel, stride 1
— ReLU activation
— MaxPool2: 2 x 2 kernel, stride 2

4. Fully Connected Layers:

— FC1: 400 — 120 with ReLU
— FC2: 120 — 84 with ReLU
— FC3: 84 — 10 (output layer)
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2.2 Data Structures and Class Implementation 2 CNN ARCHITECTURE AND IMPLEMENTATION

2.2 Data Structures and Class Implementation

2.2.1 CNN Class Design

Our implementation utilizes a modular class structure for each layer type. The convolutional layer imple-

mentation is particularly noteworthy:

class Conv3d:

1

2 def __init__(self, in_channels, out_channels, kernel_size, stride, padding):

3 self.filters = np.random.uniform(low=-1, high=1,

4 size=(out_channels, in_channels, kernel_size, kernel_size)) / (kernel_size * kernel_size)
5 self.biases = np.ones(out_channels)

This design enables efficient handling of 3D convolutions while maintaining clear separation of concerns.

2.2.2 Layer Representations
The forward propagation through the network is implemented with careful attention to dimensionality:

1. Convolutional Operation: For an input volume X and filter F', the convolution operation is defined

as:

C—-1M-1N-1

= c7,+m,j+n ' Fc,m,n +b

c=0 m=0 n=0
1 def conv3d(self, input, filters, biases, stride=1, padding=0):
2 # Shape calculations
3 batch_size, input_channels, input_height, input_width = self.input.shape
4 num_filters, _, kernel_height, kernel_width = filters.shape
5 out_height = (input_height - kernel_height) // stride + 1
6 out_width = (input_width - kernel_width) // stride + 1
7
8 output = np.zeros((batch_size, num_filters, out_height, out_width))
9 # Convolution implementation
10 # ...

There are two operations involved in the convolution, conv2d and conv3d.

Conv2d convolves a single 2D input channel with a single 2d kernel. It does this by moving the kernel
across the input in steps defined by the stride. At each step the values in each region are multiplied
elementwise, summed together and added to the bias for each kernel. Each result is concatenated into

a feature map.

Conv3d calls conv2d for each of it’s separate channels and corresponding kernel in each filter’s kernel
set and sums them all up together to generate a single 2D feature map for each filter. The output
is 4D, the first dimension for the batch of inputs, the second for the number of filters as each one

produces its own feature map, and the last two for the height and width of each feature map.

2. Max Pooling Operation: The max pooling operation is defined as:
Yi,j = max Xi~s+m,j~s+n

0<m<k,0<n<k

where k is the kernel size and s is the stride.
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2.3 Forward Propagation Implementation 3 BACKPROPAGATION ANALYSIS

2.3 Forward Propagation Implementation

Forward propagation is implemented as a sequence of layer-wise operations, with each layer maintaining

its state for backpropagation. The complete forward pass combines convolution, activation, and pooling

operations:

1 def forward(self, x):

2 x = self.cl.forward(x) # First convolution

3 x = self.rl.forward(x) # RelLU activation

4 x = self.s2.forward(x) # Maxz pooling

5

6 x = self.c3.forward(x) # Second convolution

7 x = self.r3.forward(x) # ReLU activation

8 x = self.s4.forward(x) # Maz pooling

9

10 batch_size = x.shape [0]

11 x = x.reshape(batch_size, -1) # Flatten for FC layers
12

13 x = self.fcl.forward(x) # Fully connected layers
14 x = self.fc2.forward(x)

15 x = self.fc3.forward(x)

16 return x

This implementation ensures efficient forward propagation while maintaining all necessary information

for the subsequent backpropagation phase.

3 Backpropagation Analysis

The LeNet-5 Convolutional Neural Network primarily consists of three types of layers: convolution, ReLU
activation, and max-pooling. These layers progressively extract features from the input, which are then
passed through a fully connected feed-forward network for classification output. Backpropagation through
the ReLU activation function is straightforward, as it behaves similarly to the activation functions in tradi-
tional neural networks. The remainder of this section will focus on the backpropagation algorithms for the

convolutional and max-pooling layers, which involve more complex computations.

3.0.1 Convolution Layers

During the backward pass, our goal is to calculate the gradient of the loss with respect to the filters (g—é)

To backpropogate through the convolutional layers we can use the following equation:

oL 0L JdY
OF ~ 9y OF
In a convolution layer, the output, Y is computed by convolving the input X with the filter F. To find
how changes in the filter F' affect the loss, we treat the output, Y as an intermediate variable and divide the
gradient computation into two parts. First, g—{; measures how sensitive the loss is to changes in the ouput of
the convolution. Second, g—’; measures how changes in the filter values alter the layer’s output. By linking
these two components together via the chain rule, we can obtain the equation stated above.

The gradient g{; is the derivative of the loss L with respect to the output of the convolutional layer,

and it is given to us as part of the backpropagation process. During the forward pass, the output of the
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3 BACKPROPAGATION ANALYSIS

convolutional layer Y is computed by convolving the input X with the filters F' followed by an activation

function such as ReLU

Y = ReLU(X = F +b)

where b represents the bias. This gradient is passed from the next layer in the network, and is used to
update the parameters of the convolutional layer.

The term g—? represents the gradient of the output Y with respect to the filters F' in the convolutional
layer. When performing backpropagation, we need to compute how the output changes with respect to
changes in the filter. For each position in the filter applied to the input, the output is computed by ”sliding”
the filter over the input, and computing the dot product at each position. This convolution operation
determines the value of Y for each spatial location. We the value of an output cell, Y, by using the following

equation:

H-1W-1
YVij - E E Xi+m7j+nFm,n
m=0 n=0

n

where H and W are the height and width of the filter F'.

Since the output Y at a specific position is determined by the convolution operation between the input
X and the filter F', the gradient of Y with respect to F' at a particular position is the same as the input X
at that position.

This result is then passed to the ReLU layer, and ReLLU activation is applied to each cell in the matrix.

To compute the final gradient of the loss with respect to the filters, g—g, we combine the two terms
discussed previously. Here, STL/ is passed to the current layer from the next, which tells us how much the

loss changes with respect to the output. g—? is the gradient of the output with respect to the filter, which

is determined by the convolution operation. The gradient g—}; at a given location is simply the input X at
that location. So, to calculate g—fv, we convolve the input X with the gradient of the loss with respect to the
output:
oL oL
aF ~ oy
In other words, we take the derivative of the loss from the next layer and convolve it with the input X,
and sum over all positions where the filter was applied. This is how we are able to backpropogate the error
across all convolutional layers. This results in the total gradient of the loss with respect to the filter, whcih

tells us how the filter should be updated to minimize the loss.

3.0.2 Max Pooling Layers

During the backward pass, the purpose of backpropagation in a max pooling layer is to compute the gradient
of the loss with respect to the input of the layer. This information allows earlier layers in the network to
adjust their parameters effectively. When there is no overlap between pools, we simply need to identify
which unit is the maximum value in the pool. During backpropagation, the gradient of the loss with respect
to the max pooling output is propagated only to the stored indices of the maximum values. All other values
in the pooling window receive a gradient of zero.

This process is repeated independently for each channel in the input feature map. The backpropagation

happens separately for each channel, ensuring the gradient for each channel is handled individually while
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still using the same max pooling operation.

1 dL_dinput = np.zeros_like(self.input)

During the forward pass, the indices of the maximum values within each pooling window were stored.
In the backward pass, the gradients from dL_dout are propagated only to the positions of these maximum

values

1 max_i, max_j = self .max_indices[b, c, i, j]
2 dL_dinput[b, ¢, max_i, max_j] += dL_dout[b, c, i, jl

Here, dL_dout[b,c,i,j] represents the gradient of the loss with respect to the output of the pooling
layer at a specific location. This gradient is added only to the corresponding position in dL_dinput that
matches the stores indices (max_i, max_j). Because no other positions in the pooling window are updated,

their gradients remain zero.

3.0.3 Integration Across All Layers

In the convolutional layers, backpropagation computes the gradient of the loss with respect to the filters,
which allows the model to learn which features are most important. The error signal is passed from the
next layer, and the filter gradients are computed using the chain rule. In the forward pass, the convolution
produces feature maps by applying filters to the input, and in the backward pass, the gradients are used to
adjust the filter weights to improve feature extraction in the subsequent passes.

ReLU layers introduce non-linearity, which is essential for learning more complex patterns. This mecha-
nism is in place to ensure only relevant features contribute to learning, enabling the model to focus on the
most important patterns in the data.

Max pooling layers serve to downsample the feature maps and retain the most important data by selecting
the maximum value within each pooling window. During backpropagation, the gradients are only propagated
to the positions corresponding the maximum values in each window. In the backward pass, this operation
helps the model retain the most significant features.

Backpropagation across these layers allows the network to adjust its filters and weights effectively, to learn
both simple and complex representations of the input data. As the error is propagated backward through
the network, each layer is able to update its parameters to gradually improve the model’s ability to map

inputs to accurate predictions.

4 Proofs

4.1 Proof1l

Consider:
A proof to clarify that the (3D) size of L/OF computed by the method taught in our class is always

same as the size of F' for each filter F'. We assume that the filter size is m x m x k.
Proof. We are given a convolutional filter F' of size m x m x k, where:
e m X m represents the spatial dimensions (height x width)

e k represents the number of channels
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4.1 Proof1 4 PROOFS

We need to prove that OL/OF (the gradient of loss L with respect to filter F') has these same dimensions.
First, let’s consider our forward pass understanding, as implemented in MaxPool2d.

During the forward pass, we have:
1. The filter that slides across the input image
2. At each position, every filter element is used exactly once

3. The number of times this happens is determined by these formulas:

1 H_out = ((H_in - kernel_size) // stride) + 1
2 W_out = ((W_in - kernel_size) // stride) + 1

These formulas tell us:

e How many output positions we’ll have (H_out x W_out)

e How many times each filter element will be used

e Each use of a filter element contributes to one output position Y;;

Now, let’s consider the gradient computation by the method taught in class.
Recall:

OL OV
For every element F;; we have that, 172
J Z Z; Y,k Fm

where k; ranges from 1 to H_out and k9 ranges from 1 to W_out.
Let’s break this down with a concrete example shown in class.

For filter element Fii:

oL 0L 0Yy OL 0Y1o 0L 0Yy OL 0Y»

= 1

0Fn  0Y11 0Fny * 0Y12 0F 11 - 0Yo1 0F11 N 0Ya 0F11 L
OL oL oL OL

= —X —X — X — X9 2

Y1 11+ Y1 12+ Vo 21 + Vo (2)

Here, each term represents one time F7; was used in the forward pass, and X;; represents the input value
that Fi; was multiplied with. Consequently, 0L/0Y;; represents how much that output position contributed
to the loss.

Hence, it’s critical to understand that even though this sum has H_out X W_out terms, we add them all up,
and get ONE final number. This single number then becomes the gradient for position (1, 1) in our filter.

Finally, let’s bring it all together and see how the dimensions are preserved.

For spatial dimensions (m x m), each filter position (¢, j) collects its own sum of gradients (Eqn. (1)).
Despite summing many terms, each position gets exactly one final number. This naturally creates an m x m
grid of gradients.

For the channel dimension (k), each channel in the filter operates independently. This means gradients
flow back through each channel separately. This maintains K separate channels in the gradient.

To deepen our understanding, we can think of each filter element as having a “mailbox.” During back-
propagation, it receives “gradient mail” from every output position where it was used. It then adds up all
this “mail” into one final number. This number goes into its position in the final gradient tensor.

Therefore, OL/OF must have dimensions m x m x k because:
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4.2 Proof 2 5 OPTIMIZATIONS

1. Each position (4, j) in each channel gets exactly one gradient value
2. This happens for all m x m positions

3. It happens independently for all k£ channels

4. This naturally forms an m x m X k tensor of gradients

This is why backpropagation through convolutions preserves the original filter dimensions, ensuring our

gradient updates can be directly applied to the filter during optimization. O

4.2 Proof 2

A proof to clarify that the (3D) size of g—f( computed by the method taught in our class is always the same

as the size of X for any input image X. We assume that the image size is n x n X k.

First we explain the case in 2D:

X has size n X n, convolved with a filter F' size f x f. The output Y is size (n— f+1) x (n— f+1). On the
backward pass, we need to make sure that each index of the filter overlaps with each index of g—}L,. Thus we
pad each side of each dimension of gTL, with zeros of size f — 1, the front/top padding ensuring the last index
of the filter overlaps with the first index of the input (and everything in between), and the back/bottom
padding ensuring the last index of the input overlaps with the first index of the filter.

Thus the zero-padded-input 2% becomes size ((n— f+1)+(f—1)+(f—1))x ((n—f+1)+(f—1)+(f-1)) =
(ntf=1)x(n+f-1)

Rotating F' doesn’t change the size, so F’ is still size size f X f, so plugging in the dimensions to the
following equation: g—;} =F® g—{;, the dimensions of g—)L( become: ((n+f—1)—f+1)x((n+f—1)—f+1)

which simplify to n x n.

To extend the logic to 3D:

When X has size n X n x k, the filter F has dimensions f x f x k. The convolution operation spans the
entire depth (k) of the input, so no padding is needed along this dimension. The gradient gTL, is extended
tosize (n+ f — 1) x (n+ f — 1) X numfilters. Since in the case of multiple filters, they are combined to
update the weights, this also does not affect the dimensions of g—f(.

When applying F’ of size f x f X k in the backward pass: g—)L( =F & g—é, the third dimension of g—)L(
stays k, since the convolution fully spans the depth of the input. The final size of g—)L( is n X n X k, which is

the same as X.

5 Optimizations

In order to improve from Testing accuracies that fluctuated around 10 percent, we made many adjustments
that led to the final implementation. One major change, was to use logsoftmax as the activation function
for the final layer. We did this to make sure that the final output of forward would be a log probability for
Negative Log-Likelihood (NLL) loss. This required changing y_pred to exp(y_pred) and then subtracting y
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from the result to get dL_dout in LeNet’s backward, and using dl_dout without multiplying by the activation

derivative in FNN’s layer backward for the final layer to avoid gradient distortion.

6 Experimental Results

6.1 Training Details

In order to improve the performance of our model, we implemented a variety of strategies learned in class
to avoid both exploding and vanishing gradients and to increase stability of our training.

We implemented gradient clipping in the backwards step, clipping the gradients from the fully connected
layers to keep them between (-5,5), and the convolutional layers between (-1,1).

In addition to gradient clipping, we implemented batch normalization. This was implemented similar to
ReLU, in that it was applied after each layer’s forward call. Our BatchNormalization class re-centered and
normalized the data as follows: © = (z — mean)/(std + le — 8).

Finally, to avoid overfitting, we also implemented early stopping. We noticed that once model reached
high training accuracy, it would begin to fluctuate, and would perform poorly in generalizing to the test
dataset. To avoid this, we stop training once the model reaches 95% accuracy on the training dataset.

We used three runs of the model using 10 training epochs to compare the results of training with the
ADAM optimizer and gradient descent. We used a learning rate of 0.01 for the ADAM optimizer; since it
has the ability to decay its learning, we opted for a higher learning rate to start with. For gradient descent,

we used 0.001, since a smaller learning rate may make it less likely to overstep the optimal solution.

6.2 Overview of Datasets

The project utilizes two benchmark datasets to train and test our LeNetb model implementation: MNIST
and CIFAR-10. To prepare our data, data_loader.py is implemented. The data_loader.py downloads and
transforms the data using torchvision. Transformation involves: resizing all images to 32x32 pixels, which
specifies height and width of images, to match the input dimension expected by LeNet5, batching data for
training, which is shuffled, and testing, by specified batch size, and converting images to PyTorch tensors and
normalizes the pixel values to the range [0, 1]. The produced data have shapes of (batch size, channel_depth,
height, width), where channel depth is 1 and 3 for MNIST and CIFAR-10 respectively. Here is what these

datasets contain:

e MNIST: counsists of 60,000 training and 10,000 test grayscale images(channel depth = 1) of handwritten
10 digits(0-9)

e CIFAR-10: consists of 60,000 training and 10,000 test color images(channel_depth = 3) of 10 classes

of objects (e.g. airplane, automobile, bird, cat, etc).

6.3 MNIST Dataset

The ADAM optimizer converged much quicker than gradient descent; it reached the stopping point for
training within 4 epochs, as seen in figure [I] It also experienced much more successful generalization in its

training, as demonstrated in figure
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Figure 1: Comparison of Training Accuracies with MNIST for ADAM and Gradient Descent.

mnist Testing Accuracy Comparison: ADAM vs Gradient Descent
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Figure 2: Comparison of Testing Accuracies with MNIST for ADAM and Gradient Descent.

6.4 CIFAR-10 Dataset

The CIFAR dataset required more training epochs for ADAM. Both ADAM and GD achieved high training
accuracy, as seen in figure[3]but both methods struggled to generalize their trainings. The difference between
testing accuracy achieved by ADAM and GD was less pronounced with the CIFAR dataset, but ADAM was
slightly better (figure .

cifar Training Accuracy vs Epoch for ADAM cifar Training Accuracy vs Epoch for GD
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Figure 3: Comparison of Training Accuracies with MNIST for ADAM and Gradient Descent.
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cifar Testing Accuracy Comparison: ADAM vs Gradient Descent
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Figure 4: Comparison of Testing Accuracies with MNIST for ADAM and Gradient Descent.

7 Discussion

Overall, we were able to achieve high training performance and some generalization for the MNIST dataset,
but struggled to generalize with the CIFAR set. We observed that ADAM is a more robust optimization
method for our model than gradient descent.

Our model struggled to generalize with the CIFAR dataset. This dataset is a more complex dataset
and classification task compared to the MNIST dataset, so this wasn’t an unexpected result. In figure |3| it
appears that ADAM converges around 2 epochs, so a lower early stopping threshold could possibly improve

generalization accuracy.

8 Conclusion

This project successfully implemented the LeNet-5 CNN architecture from scratch using only NumPy, demon-
strating both the capabilities and challenges of fundamental deep learning concepts. The implementation
included complete forward and backward propagation through convolutional layers, max pooling layers,
and fully connected layers, while incorporating critical optimizations such as batch normalization, gradient
clipping, and early stopping.

The comparitive analysis between Adam optimizer and gradient descent revealed Adam’s superior per-
formance in both convergence speed and generalization capability, particularly with the MNIST dataset.
While the model achieved strong performance on MNIST, the more complex CIFAR-10 dataset presented
greater challenges, highlighting the increasing difficulty of image classification tasks with color images and
more diverse object categories.

Through mathematical proofs and practical implementation, this project provided valuable insights into
the core mechanisms of CNNs, establishing a solid foundation for understanding and further experimentation
with deep learning architectures. The results underscore both the power of CNNs in image classification

tasks and the importance of proper optimization techniques in achieving reliable model performance.
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Team Contributions

Jyrus Cadman

Jyrus was responsible for establishing the foundational architecture of the CNN implementation project,
including defining the initial project structure and core source code files. He implemented critical data
structures and developed the MaxPool2d class, which handles the crucial dimensionality reduction in the
LeNet-5 architecture through max pooling operations. His implementation includes efficient forward prop-
agation logic that processes input tensors and maintains proper dimensional transformations between con-
volutional layers. Additionally, he worked on the mathematical proof demonstrating that the gradient of
the loss with respect to a convolutional filter (OL/OF) maintains the same dimensions as the original filter
F, providing theoretical validation for the backpropagation implementation. His work aided the subsequent
implementation of backpropagation through the max pooling layers and integration with the broader CNN

architecture.

Sho Komiyama

Sho was responsible for debugging, creating tests, and setting up essential components to ensure the LeNet
implementation worked correctly. This include preparing data_loader for MNIST and CIFAR-10 datasets,
validating the forward pass through the network, and building a basic training sequence. The specific tasks
included: developing multiple tests to verify that the convolution, ReLu, and max-pooling operations were
working correctly. These tests ensures that inputs and outputs had the correct dimensions and the layers
were properly connected in the forward pass. Debugging these layers was done with Gabriel’s assistance.
During the testing, a discrepancy was discovered between the project implementation and the example shown
in Lecture 24, Slide 12. The example appeared to produce a slightly incorrect result, likely because a basis
term was not applied to one element after the convolution. This confirmed that the project’s implementation
was accurate. Also created and tested data_loader to ensure that data was correctly loaded and formatted
for use in training. Also designed a basic training process to validate the network functionality. The training
sequence performed correctly during the forward pass but encountered an issue during backpropagation in
the max-pooling layer, which revealed a disconnection between the max-pooling layer and fully connected

layers, which was subsequently fixed by Bethany. Then wrote the section “Overview of Datasets.”

Robert McCourt

Robert was responsible for implementing the backpropagation algorithm for the max pooling layer. Robert
worked with Bethany to integrate each of their implementations of backpropagation, as well as ReLU into the
project. He made modifications to the Conv3D and Conv2D functions and class to address dimensionality and
shape issues, ensuring proper functionality. Robert also tested data preprocessing and conducted preliminary
testing, modifying the forward function in the max pooling class to be more computationally efficient. Robert
also modified the project to easily and dynamically accept the MNIST or CIFAR dataset to streamline testing,
and reflect the accuracy of the model at each epoch. Robert also worked with Gabe on solutions on how to
improve the accuracy of the model, such as using Xavier initialization and proper initialization of the bias,
as well as contributing to the general debugging effort. Robert wrote the section on backpropagation in the
report, incorporating code from both himself and Bethany and using the book as a foundational guide for

his explanations.
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Bethany Pena

Bethany was responsible for implementing the backpropogation algorithm for the convolutional layer, using
the textbook and lecture slides as resources, which she verified with Jyrus and Gabe’s proofs. She and
Robert collaborated on integrating the different backpropogation pieces from the different types of layers
(Convolution, ReLu, Fully Connected) into one function. Sho had pointed out an idea of how to better
integrate the fully connected layers, and Bethany implemented his idea and got the initial forward and
backward functions working. She also worked with Gabe to fix an error in padding the g—f/ matrix in the
convolution backpropogation function. Additionally, Bethany worked with Gabe on testing and improving
the training process. Bethany implemented approaches learned in class to improve and stabilize training
performance such as the batch normalization layers, and early stopping. She also integrated Robert’s ADAM
optimizer code from the previous project into this project. Bethany compiled the final testing results and

figures.

Gabriel Urbaitis

Gabriel debugged some of Bethany’s backward method in the CNN.py file, identifying the need to not divide
the f-1 padding by 2 in backpropagation, and helping her find where self.input in the Conv3d class was set
incorrectly, leading to a size mismatch when the input dimensions were used for assigning dl/dx. He wrote
the second proof, assisted Sho in testing 2d convolution on the example from slide 12 in lecture 24, and
assisted Sho in testing and identifying bugs in Jyrus’s first implementation of maxpool2d. He helped debug
Sho’s dataloading connection with the network initialization, including testing dimensionality for Cifar and
MNIST. He added the FNN to the project, establishing the link between the CNN with the function for
flattening the outputted last set of feature maps to use as input for the FNN. The FNN was later broken up
by Bethany for ease of use. Gabriel wrote the conv3d, conv2d, forward, and padding functions, though the
padding function was replaced by Robert, for reasons that there hadn’t been time to discuss at submission
time. He also wrote the Conv3d class’s constructor in CNN.py. He made the changes associated with

logsoftmax described in the optimizations section. He wrote the getAccuracy function as well.
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Appendix

Code Listings

1 import numpy as np

3 from activations import ReLU, BatchNormalize
4 from CNN import Conv3d, MaxPool2d
5 from FNN.fnn import FNN

from FNN.layer import Layer as FFLayer

nwun

6
7
8 class CNN:
9
0

Convolutional Neural Network.

11 nwun

12

13 def __init__(self, input_shape, num_classes):

14 o

15 Initialize the CNN.

16 o

17 channels, height, width = input_shape

18

19 # Use dynamic in_channels for CIFAR (3 channels) or MNIST (1 channel)

20 self.cl = Conv3d(in_channels=channels, out_channels=6, kernel_size=5, stride=1, padding=0)

21 self.rl = ReLU(Q)

22 self.bl = BatchNormalize ()

23 self.s2 = MaxPool2d(kernel_size=2, stride=2)

24

25

26 self.c3 = Conv3d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0)

27 self.r3 = RelLU()

28 self .b3 = BatchNormalize ()

29 self.s4 = MaxPool2d(kernel_size=2, stride=2)

30

31 self.fcl = FFLayer (n_input=400, n_output=120, activation=’relu’)

32 self.b4 = BatchNormalize ()

33 self.fc2 = FFLayer (n_input=120, n_output=84, activation=’relu’)

34 self.b5 = BatchNormalize ()

35 self.fc3 = FFLayer(n_input=84, n_output=num_classes, activation=’logsoftmax’)

36

37 self.layers = [self.cl, self.rl, self.s2, self.c3, self.r3, self.s4, self.fcl, self.fc2, self
.fc3]

38 self.output = None

39

40 def forward(self, x):

41 mn

42 Forward pass for LelNet.

43 e

44 # Transpose tinput to NCHW format (batch_size, channels, height, width)

45 #z = np.transpose(z, (0, 3, 1, 2))

46

47 # Layer 1: Conwvolution -> ReLU -> Maxz Pooling

48 x_convl = self.cl.forward(x) # Convolution

49 x = self.rl.forward(x_convl) # ReLU activation

50 x = self.bl.forward(x)

51 x = self.s2.forward(x) # Maxz Pooling

52

53 # Save input for backpropagation (only input to the convolution is needed)

54 #self.cl.input = xz_convl

55

56 # Layer 2: Conwvolution -> ReLU -> Maxz Pooling

57 x_conv2 = self.c3.forward(x) # Convolution

58 x = self.r3.forward(x_conv2) # ReLU activation

59 x = self.b3.forward(x)
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60 x = self.s4.forward(x) # Maz Pooling

61

62 # Save input for backpropagation

63 # self.c3.input = xT_conv2

64

65 # Flatten for Fully Connected Layers

66 batch_size = x.shape [0]

67 x = x.reshape(batch_size, -1)

68

69 # Fully Connected Layers

70 x = self.fcl.forward(x)

71 x = self.bd.forward(x)

72 x = self.fc2.forward(x)

73 x = self.bb5.forward(x)

74 x = self.fc3.forward(x)

75

76

77 return x

78

79

80

81 def backward(self, y, y_pred, learning_rate, loss_func ="nll"):

82 o

83 Perform backpropagation through all layers of the CNN

84 params:

85 dL_dout: Gradient of the loss with respect to the output of the CNN (shape: batch_size z
num_classes) .

86 learning_rate: Learning rate.

87 e

88 if loss_func == ’mse’:

89 #Regular

20 dL_dout = 2 * (y_pred - y) / y.shapelO]

91 elif loss_func == ’nll’:

92 p = np.exp(y_pred)

93 dL_dout = p -y

94

95 # Feed Forward Layers

96 grad_W, dL_dout = self.fc3.backward (dL_dout)

97 print ("Mean abs grad FC3 weights:", np.mean(np.abs(grad_w)))

98 grad_W = np.clip(grad_W, -5, 5)

99 self.fc3.weights -= learning_rate * grad_W

00

01 grad_W, dL_dout = self.fc2.backward (dL_dout)

02 print ("Mean abs grad FC2 weights:", np.mean(np.abs(grad_W)))

03 grad_W = np.clip(grad_W, -5, 5)

04 self.fc2.weights -= learning_rate * grad_W

05

06 grad_W, dL_dout = self.fcl.backward (dL_dout)

07 print ("Mean abs grad FC1 weights:", np.mean(np.abs(grad_w)))

08 grad_W = np.clip(grad_W, -5, 5)

09 self.fcl.weights -= learning_rate * grad_W

10

11 # Begin CNN layers

12

13 # reshape for max pool?

14 batch_size, original_channels, height, width = self.s4.output.shape

15 dL_dout = dL_dout.reshape(batch_size, original_channels, height, width)

16 dL_dout = self.s4.backward(dL_dout)

17

18 # conv

19 dL_dout, grad_filters, grad_biases = self.c3.backward (dL_dout)

20 grad_filters = np.clip(grad_filters, -1, 1)

21 grad_biases = np.clip(grad_biases, -1, 1)

22 self.c3.filters -= learning_rate * grad_filters

23 self.c3.biases -= learning_rate * grad_biases
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{grad_biases.shape}")

rho_£f=0.9, epsilon=le-8,

of the CNN (shape:

batch_size

(rho_f *x t) + 1e-8))

24 print (f"shape of grad filters and biases: {grad_filters.shapel,

25

26 # mazpool

27 dL_dout = self.s2.backward(dL_dout)

28

29 # conv

30 dL_dout, grad_filters, grad_biases = self.cl.backward (dL_dout)

31 grad_filters = np.clip(grad_filters, -1, 1)

32 grad_biases = np.clip(grad_biases, -1, 1)

33 self.cl.filters -= learning_rate * grad_filters

34 self.cl.biases -= learning_rate * grad_biases

35

36

37 def backward_adam(self, y, y_pred, t, learning_rate, rho=0.999,

loss_func ="nll"):

38 e

39 Perform backpropagation through all layers of the CNN

40 params :

41 dL_dout: Gradient of the loss with respect to the output
num_classes) .

42 learning_rate: Learning rate.

43 e

44

45 alpha_t = learning_rate * ((np.sqrt(l1 - (rho **x t))) / (1 -

46 print (f"alpha t {alpha_t}")

a7

48 if loss_func == ’mse’:

49 #Regular

50 dL_dout = 2 * (y_pred - y) / y.shapelO]

51 elif loss_func == ’nll’:

52 p = np.exp(y_pred)

53 dL_dout =p -y

54 elif loss_func == "cross_entropy":

55 dL_dout = -np.sum(y * y_pred ) / y.shape[O]

56 # print (dL_dout)

57

58 # Feed Forward Layers

59 grad_W, dL_dout = self.fc3.backward (dL_dout)

60 grad_W = np.clip(grad_W, -5, 5)

61 self.fc3.update_A(grad_W, rho)

62 self.fc3.update_F(grad_W, rho_f)

63 adaptive_step = self.getAdaptiveStep(self.fc3.4,

64 self .fc3.F,

65 alpha_t, rho,

66 rho_f,

67 t, epsilon)

68 self.fc3.weights -= adaptive_step

69

70 grad_W, dL_dout = self.fc2.backward(dL_dout)

71 grad_W = np.clip(grad_W, -5, 5)

72 self.fc2.update_A(grad_W, rho)

73 self.fc2.update_F(grad_W, rho_f)

74 adaptive_step = self.getAdaptiveStep(self.fc2.4,

75 self.fc2.F,

76 alpha_t, rho,

7 rho_f,

78 t, epsilon)

79 self.fc2.weights -= adaptive_step

80

81 grad_W, dL_dout = self.fcl.backward(dL_dout)

82 grad_W = np.clip(grad_W, -5, 5)

83 self.fcl.update_A(grad_W, rho)

84 self.fcl.update_F(grad_W, rho_f)

85 adaptive_step = self.getAdaptiveStep(self.fcl.A,

86 self.fcl.F,
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87
88
89
90
91
92
93
94

95

209
10
211
12
213
14

16
217
18
19
20
221
22
23
24

26
27
28
29
30
31
232
33

35
236
37
238
39
40
41
42
43
44
45
46
47
48
49

51

def

alpha_t, rho,

rho_f,

t, epsilon)
self.fcl.weights -= adaptive_step

# Begin CNN layers

# reshape for max pool?

batch_size, original_channels, height, width = self.s4.output.shape
dL_dout = dL_dout.reshape(batch_size, original_channels, height, width)
dL_dout = self.s4.backward(dL_dout)

# conv

dL_dout, grad_filters, grad_biases = self.c3.backward (dL_dout)
grad_filters = np.clip(grad_filters, -1, 1)

grad_biases = np.clip(grad_biases, -1, 1)
self.c3.update_A(grad_filters, rho)
self.c3.update_F(grad_filters, rho_f)

adaptive_step = self.getAdaptiveStep(self.c3.4A,

self.c3.F,
alpha_t, rho,
rho_f£f,
t, epsilon)
self.c3.filters -= adaptive_step
self.c3.biases -= learning_rate * grad_biases

print (f"shape of grad filters and biases: {grad_filters.shape}, {grad_biases.shapel}")

# mazpool
dL_dout = self.s2.backward(dL_dout)

# conv

dL_dout, grad_filters, grad_biases = self.cl.backward(dL_dout)
grad_filters = np.clip(grad_filters, -1, 1)

grad_biases = np.clip(grad_biases, -1, 1)
self.cl.update_A(grad_filters, rho)
self.cl.update_F(grad_filters, rho_f)

adaptive_step = self.getAdaptiveStep(self.cl.A,

self.cl.F,
alpha_t, rho,
rho_f,
t, epsilon)
self.cl.filters -= adaptive_step
self.cl.biases -= learning_rate * grad_biases
train(self, input, labels, epochs: int, learning_rate: int = 0.01, optimizer = "gd"):
input = (input - 0.5) / 0.5
training_accuracy = []

for epoch in range (epochs):

loss_sum = 0 # accumulated loss within epoch
correct = 0 # correctly classified samples
total = 0 # total samples

# Forward pass

out = self.forward(input)

# Convert Taw class indices to one-hot encoding

if labels.ndim == 1: # If labels are raw class indices
num_classes = out.shape[l]
labels = np.eye(num_classes) [labels] # Convert to one-hot

# Backward pass
if optimizer == "gd":
self .backward(labels, out, learning_rate, loss_func="nll")

elif optimizer == "adam":
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52 self .backward_adam(labels, out, epoch+l, learning_rate, loss_func="nll")
53 else:

254 raise ValueError(f"{optimizer} not an available optimizer")

57 # Calculate predictions and accuracy

58 predictions = np.argmax(out, axis=1)

59 true_labels = np.argmax(labels, axis=1)

60 correct += np.sum(predictions == true_labels)
61 total += labels.shape[0]

62 accuracy = (correct / total) * 100

63

64 loss = -np.mean(np.sum(labels * out, axis=1))
65

66 # Print accuracy after each epoch

67 print (f"Epoch {epoch + 1}/{epochs}- Loss: {loss:.4f}, Accuracy: {accuracy:.2f}%")
68

69 training_accuracy.append (accuracy)

70

71 if accuracy > 95:

72 print ("Reached high enough accuracy")

73 break

74

75 return training_accuracy

276

77

278 def getAccuracy(self, test_loader):

79 correct = 0

280 total = 0

81

82 for idx, test_batch in enumerate(test_loader):

83 test_input, test_labels = test_batch

84 test_input = test_input.numpy ()

85 test_labels = test_labels.numpy ()

86

87 # Normalize input

88 test_input = (test_input - 0.5) / 0.5 # Match normalization from training
89

90 # Forward pass

91 out = self.forward(test_input)

93 # Predictions

94 predicted_classes = np.argmax(out, axis=1) # Predicted class indices
95 true_classes = test_labels # Directly wuse 1D array of true class indices
96

97 # Accuracy calculation

98 correct += np.sum(predicted_classes == true_classes)

299 total += test_labels.shape[0]

00

301 # Break early for debugging

02 if idx > 5: # Limit to 5 batches

303 break

04

305 accuracy = correct / total * 100

06 print (f"Test Accuracy: {accuracy:.2f}%")

307 return accuracy

08

309 def clip_gradient(self, gradient, threshold=1.0):

10 norm = np.linalg.norm(gradient)

11 if norm > threshold:

12 scaling_factor = np.clip(threshold / norm, a_min=0, a_max=1.0)
13

14 # Scale the gradient using the factor

15 gradient = gradient * scaling_factor

16
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317 # print (gradient)

18 return gradient

319

20

3421 def getAdaptiveStep(self, A, F, alpha_t, rho, rho_f, t, epsilon):

22 A_hat = A * (1 / ((1 - (rho ** t)) + 1e-8))

323 F_hat = F * (1 / ((1 - (rho_f ** t)) + 1le-8))

24 adaptive_step = alpha_t * F_hat / (np.sqrt(A_hat) + epsilon)

return adaptive_step

Listing 1: LeNet.py

1 import numpy as np

kernel_size,

padding) :

kernel_size) * 0.01

{self.biases.shape}")

(pad_size, pad_size)), mode=’

height, width).

self.padding)

2 from FNN.layer import Layer

3

4 class Conv3d:

5 wun

6 3D Conwolutional Layer

7 wun

8

9 def __init__(self, in_channels, out_channels, kernel_size, stride,

10 self.in_channels = in_channels

11 self.out_channels = out_channels

12 self .kernel_size = kernel_size

13 self.stride = stride

14 self .padding = padding

15

16 self.filters = np.random.randn(out_channels, in_channels,

17 self .biases = np.zeros(out_channels)

18

19 # for adam optimization

20 self.A = np.zeros_like(self.filters)

21 self .F = np.zeros_like(self.filters)

22

23 #print (f"Initialized filters: {self.filters.shapel}, biases:

24

25

26 def pad_matrix(self, input, pad_size):

27 return np.pad(input, ((0, 0), (0, 0), (pad_size, pad_size),
constant’)

28

29

30 def forward(self, input):

31 e

32 params :

33 input: 4D input array of shape (batch_size, in_channels,

34 return:

35 conv3d output

36 e

37 self.input = input

38 print ("from forward, input shape: ", input.shape)

39 return self.conv3d(input, self.filters, self.biases, self.stride,

40

41 def conv2d(self, input_channel, kernel, bias, stride):

42 e

43 params :

44 input_channel: one of the 2D input channels (height z width).

45 kernel: the associated 2D kernel (height z width).

46 bias: bias for the kernel

47 stride: stride of convolution.

48

49 return:

50 2D output matriz.

51 e
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52

53 input_height, input_width = input_channel.shape

54 kernel_height, kernel_width = kernel.shape

55

56 # output dimensions

57 out_height = (input_height - kernel_height) // stride + 1
58 out_width = (input_width - kernel_width) // stride + 1

59

60

61 output = np.zeros ((out_height, out_width))

62

63 # 2D convolution

64 for i in range (out_height):

65 for j in range(out_width):

66 region = input_channel[

67 i * stride:i * stride + kermnel_height,

68 j * stride:j * stride + kernel_width

69 ]

70

71 region = np.clip(region, -1e3, 1e3)

72 kernel = np.clip(kernel, -1e3, 1e3)

73

74 # Perform convolution

75 try:

76 output[i]J[j] = np.sum(region * kermnel) + bias
7 except RuntimeWarning as e:

78 print (f"Overflow in convolution at position ({i}, {j}):", e)
79 print ("Region:", region)

80 print ("Kernel:", kernel)

81 raise e

82

83 # Debug: Print output of the convolution

84 #print (f"Convolution output shape: {output.shapel")

85

86 return output

87

88 def conv3d(self, input, filters, biases, stride=1, padding=0):
89 e

90 params:

91 input: 4D input array of shape (batch_size z input_channels z height = width).
92 filters: filters (num_filters z input_channels z kernel_height = kernel_width).
93 biases: bias for each filter

94 stride: stride of convolution.

95 padding: padding on height and width.

96

97 return:

98 4D output matriz (batch_size x num_filters = out_height = out_width).
99 e

00

01 # print (f"conv3d - input shape: {input.shapel}")

02 e

03 if padding > O0:

04 self.input = self.pad_matriz(input, padding)

05 else:

06 self.input = wnput

07 e

08

09 batch_size, input_channels, input_height, input_width = input.shape
10 num_filters, filter_channels, kernel_height, kernel_width = filters.shape
11

12 # print the input shape

13 # print (f"Input shape: {input.shapel}")

14 # print ("batch size: ", batch_size)

15 # print ("input height: ", dinput_height)

16 # print ("input channels: ", input_channels)
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17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35

def

# print ("input width: ", dinput_width)

# print (f"Filters shape: {filters.shape}")

# print ("num filters: ", num_filters)

# print ("filter channels: ", filter_channels)
# print ("kernel height: ", kernel_height)

# print ("kernel width: ", kernel_width)

# output dimensions
out_height = (input_height - kernel_height + 2 * padding) // stride + 1
out_width = (input_width - kernel_width + 2 * padding) // stride + 1

# Debug: Print calculated output dimensions
# print (f"Calculated output dimensions: out_height={out_height}, out_width={out_widthl}")

# output wnitialization
output = np.zeros((batch_size, num_filters, out_height, out_width))

# 3D convolution
for batch in range(batch_size):
for filter in range(num_filters):
global _output = np.zeros((out_height, out_width))
for channel in range (input_channels):
# Sum all channels
global_output += self.conv2d(
input [batch, channel], filters[filter, channel], biases[filter], stride
)
output [batch, filter] = global_output

return output

backward (self, dL_dout):
pa,'r‘ams .

dL_dout: derivative of loss w.r.t output of previous layer

return:

wun

batch_size, dL_dout_channels, dL_dout_height, dL_dout_width = dL_dout.shape
num_filters, in_channels, kernel_height, kernel_width = self.filters.shape

dL_db = np.zeros(num_filters)

# compute dL \ dF

dL_df = np.zeros_like(self.filters)

for batch in range(batch_size):

for filter in range(num_filters):
for channel in range(in_channels):
dL_df [filter, channel, :,:] = self.conv2d(self.input[batch, channel,:,:],

dL_dout [batch, filter,:,:],
0, # bias is 0 because we don’t mneed i1t here

stride=self.stride)

# computer dL \ dz (this is the part that will be backpropogated)
dL_dx = np.zeros_like(self.input)
print ("input shape ", self.input.shape)
for batch in range(batch_size):
for filter in range(num_filters):
for channel in range(in_channels):
# rotate 90 degrees tuwice
rotated_filter = np.rot90(self.filters[filter,channel,:,:],
k=2,)

# Add padding to dL_dout to match input size (padding = kernel size - 1)

# Slides say "Notice that you need to extend the matriz."”
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filter,:,:],

1S zero because we handle is separately

channel, :,

channel, :, :]

channel, :,

dtype=int)

82 # print (self. filters[filter, channel,:,:])

83 pad_size = (self.filters.shapel[2] - 1) #// 2

84 # print(pad_size)

85 padded_dL_dout = self.pad_matrix(dL_dout, pad_size)

86 # print (padded_dL_dout.shape)

87 dL_dx [batch,channel,:,:] = self.conv2d(padded_dL_dout [batch,

88 rotated_filter,

89 0, # bias

90 stride=self.stride)

91

92 # compute bias gradient

93 for filter in range(num_filters):

94 dL_db[filter] = np.sum(dL_dout[:, filter, :, :1)

95

96

97 return dL_dx, dL_df, dL_db

98

99 def update_A(self, grad_filter, rho=0.999):

00 grad_filter = np.clip(grad_filter, -3, 3)

01 num_filters, in_channels, kernel_height, kernel_width = grad_filter.shape

02 for filter in range(num_filters):

03 for channel in range(in_channels):

04 self .A[filter, channel, :, :] = (rho * self.A[filter, channel, :, :]

05 + (1 - rho) * (grad_filter[filter,
1] %*%2))

06

07

08 def update_F(self, grad_filter, rho_f=0.9):

09 grad_filter = np.clip(grad_filter, -3, 3)

10 num_filters, in_channels, kernel_height, kernel_width = grad_filter.shape

11 for filter in range(num_filters):

12 for channel in range(in_channels):

13 self .F[filter, channel, :, :] = (rho_f * self.F[filter,

14 + (1 - rho_f) * (grad_filter[filter,
:1))

15

16

17

18

19 class MaxPool2d:

20 o

21 2D Mazxz Pooling Layer.

22 e

23

24 def __init__(self, kernel_size, stride):

25 self .kernel_size = kernel_size

26 self.stride = stride

27 self.input = None

28 self .max_indices = None # To store indices of mazxz values during forward pass

29

30 def forward(self, input):

31 e

32 Perform mazxz pooling and store argmaz indices.

33 e

34 self.input = input

35 batch_size, channels, H_in, W_in = input.shape

36

37 # Calculate the output dimensions

38 H_out = ((H_in - self.kernel_size) // self.stride) + 1

39 W_out = ((W_in - self.kernel_size) // self.stride) + 1

40

41 # Initialize output and indices

42 output = np.zeros((batch_size, channels, H_out, W_out))

43 self .max_indices = np.zeros((batch_size, channels, H_out, W_out, 2),

44
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for b in range(batch_size):
for ¢ in range(channels):
for i in range (H_out):

48 for j in range(W_out):

249 h_start = i * self.stride

50 h_end = h_start + self.kernel_size

51 w_start = j * self.stride

52 w_end = w_start + self.kernel_size

53

54 window = input[b, ¢, h_start:h_end, w_start:w_end]

# Find max and store it

max_idx_flat = np.argmax(window)

57 max_idx = np.unravel_index(max_idx_flat, (self.kernel_size,
)

58

59 output [b, ¢, i, jl] = window[max_idx]

60 # Store the ezact indices in the original input

61 self .max_indices[b, ¢, i, j, 0] = h_start + max_idx[0]

62 self .max_indices[b, ¢, i, j, 1] = w_start + max_idx[1]

64 self.output = output

65 return output

66

67 def backward(self, dL_dout):

nwun

Backpropagation using stored maxz indices.
wwn

batch_size,
H_out,

channels,
W_out =

H_in,
dL_dout . shape

W_in = self.input.shape

272 -

-

# Initialize gradient w.r.t

dL_dinput =

wnput

np.zeros_like (self.input)

# Directly use the stored maz indices
for b in range(batch_size):
for ¢ in range(channels):
for i in range (H_out):
for j in range(W_out):
max_i, self .max_indices[b, i,

max_j = c,

dL_dinput [b,

j1

c, max_i, max_j] += dL_dout[b, c, i,

il

return dL_dinput

self .kernel_size)

Listing 2: CNN.py

[

import numpy as np

2

3 from FNN.layer import Layer

4

5 class FNN:

6 nwun

7 A Feed-Forward Neural Network.

8 nwun

9

10 # Initialize the network with a list of layers
11 def __init__(self, layers):

12 self.layers = layers

13

14 # Perform forward propagation through all layers
15 def forward(self, X):

16 for layer in self.layers:

17 X = layer.forward(X)

18 return X

19
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wun

Cal
X:
y:
y-p
los

wun

def

culate gradients for all layers.

Input data

True labels

red: Predicted output from the forward pass

s_func: Loss function (’mse’ or ’nll’)

backward(self, y, y_pred, loss_func=’mse’):
if loss_func == ’mse’:

#NewtonCases

dL_dout = (y_pred - y) / y.shapel[O]

#Regular
#dL_dout = 2 * (y_pred - y) / y.shape[0]
elif loss_func == ’nll’:

dL_dout = y_pred - y
gradients_W = []
# Proceeding backward through the layers, add each new calculation to the front
# to create the gradients array
for layer in reversed(self.layers):
grad_W, dL_dout = layer.backward(dL_dout)
gradients_W.insert (0, grad_W)

return gradients_W

# Update weights and biases using gradient descent

def

def

gd(self, gradients_W, learning_rate):
for layer, grad_W in zip(self.layers, gradients_W):

layer.weights -= learning_rate * grad_W

sgd(self, X, y, batch_size, learning_rate, loss_func=’mse’):
indices = np.arange (X.shape[0])

np.random.shuffle(indices)

for start_idx in range (0, X.shape[0] - batch_size + 1, batch_size):
batch_indices = indices[start_idx:start_idx + batch_size]
X_batch = X[batch_indices]
y_batch = y[batch_indices]

# Forward pass

y_pred = self.forward(X_batch)

# Backward pass

gradients = self.backward(y_batch, y_pred, loss_func)

# Update weights
for layer, gradient in zip(self.layers, gradients):

layer.weights -= learning_rate * gradient

# Train the network wusing forward and backward propagation

def

# Train
def

def

train(self, X, y, learning_rate, epochs):
for _ in range(epochs):
y_pred = self.forward(X)
gradients_W = self.backward(y,y_pred)
self.gd(gradients_W, learning_rate)
the network using stochastic gradient descent
trainsgd(self, X, y, learning_rate, epochs, batch_size, loss_func=’mse’):
for epoch in range (epochs):
self.sgd(X, y, batch_size, learning_rate, loss_func)

# Calculate and print loss for monitoring

y_pred = self.forward(X)

loss = self._calculate_loss(y, y_pred, loss_func)
print (£"Epoch {epoch + 1}/{epochs}, Loss: {lossl}")

_calculate_loss (self, y, y_pred, loss_func):
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85 if loss_func == ’‘mse’:

86 return np.mean((y_pred - y) ** 2)

87 elif loss_func == ’nll’:

88 return -np.mean(y * np.log(y_pred + 1e-8))

89 else:

90 raise ValueError ("Unsupported loss function")

Listing 3: fon.py

1 import random

2

3 import numpy as np

4

5 class Layer:

6 won

7 A layer in the Feedforward Neural Network (FNN).

s won

9

10 # Randomly initialize weights and biases

11 def __init__(self, n_input, n_output, activation=’relu’):

12 random.seed (2400)

13 self .weights = np.random.randn(n_input+1l, n_output) * 0.01

14 self.activation_function = activation

15 self .n_input = n_input

16

17 # for adam

18 self.A = np.zeros_like(self.weights)

19 self .F = np.zeros_like(self.weights)

20

21 def forward(self, X):

22 X = np.hstack([X, np.ones((X.shape[0], 1))1)

23

24 self.z = np.dot(X, self.weights)

25 self.a = self.activate(self.z)

26 self.input_data = X

27

28 return self.a

29

30 # Activation functions

31 def activate(self, z):

32 activations = {

33 ’relu’: lambda z: np.maximum(0, z),

34 ’sigmoid’: lambda z: 1 / (1 + np.exp(-z)),

35 ’id’: lambda z: z,

36 ’sign’: lambda z: np.sign(z),

37 ’tanh’: lambda z: np.tanh(z),

38 ’hard tanh’: lambda z: np.clip(z, -1, 1),

39 ’logsoftmax’: lambda z: z - np.log(np.sum(np.exp(z - np.max(z,

axis=1, keepdims=True) + 1e-8)

40 }

41

42 return activations[self.activation_function](z)

43

44 # Derivatives of activation functions

45 e

46 If an error arises using the ’sign’ activation function,
undefined at z = 0. (Will return Nal)

a7 e

48 def activation_deriv(self, z):

49 derivs = {

50 ’relu’: lambda z: np.where(z > 0, 1, 0),

51 ’sigmoid’: lambda z: (sig := 1 / (1 + np.exp(-2z))) * (1 - sig),

52 ’id’: lambda _: np.ones_like(z),

53 ’sign’: lambda z: np.zeros_like(z), # Derivative undefined at z
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axis=1, keepdims=True) +

54 ’tanh’: lambda z: 1 - np.tanh(z) ** 2,

55 ’hard tanh’: lambda z: np.where(np.abs(z) <= 1, 1, 0),

56 # logsoftmaxz derivative here

57 ’logsoftmax’: lambda z: np.exp(z - np.max(z, axis=1, keepdims=True)) / (

58 np.sum(np.exp(z - np.max(z, axis=1, keepdims=True)),
le-8)

59 }

60

61 return derivs[self.activation_function](z)

62

63 def backward(self, dL_dout):

64 dL_dout = np.nan_to_num(dL_dout)

65 if self.activation_function != ’logsoftmax’:

66 activation_deriv = self.activation_deriv(self.z)

67 dL_dout *= activation_deriv

68 # partial derivative of the loss w.r.t. the weights

69 grad_W = np.dot(self.input_data.T, dL_dout)

70 # accumulation of partial derivative of the loss for each layer

71 dL_din = np.dot(dL_dout, self.weights.T)

72

73 # Remove the bias

74 dL_din = dL_din[:, :-1]

75

76 grad_W = np.clip(grad_W, -3, 3)

77

78 return grad_W, dL_din

79

80

81 def update_A(self, gradients_W, rho=0.999):

82 gradients_W = np.clip(gradients_W, -3, 3)

83 self .A = rho*self.A + (1 - rho) * (gradients_W ** 2)

84

85 def update_F(self, gradients_W, rho_£f=0.9):

86 gradients_W = np.clip(gradients_W, -3, 3)

87 self .F = rho_f * self.F + (1-rho_f) * gradients_W

Listing 4: layer.py

1 import numpy as np

2

3

4 class RelLU:

5 wnn

6 ReLU Activation Function.

7 wun

8

9 def __init__(self):

10 self.x = None

11

12 def forward(self, x):

13 self.x = x

14 # return z if T > 0 else 0
15 return np.maximum(0, x)
16

17 class BatchNormalize:

18 o

19 ReLU Activation Function.
20 o

21

22 def __init__(self):

23 self.x = None

24

25 def forward(self, x):

26 mean = np.mean(x, axis=0)
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27 std = np.std(x, axis=0)
28 x = (x - mean) / (std + 1e-8)
29 return x

Listing 5: activations.py

1 import numpy as np
from torchvision import datasets, transforms

from torch.utils.data import DatalLoader

from LeNet import CNN

2
3
4
5 import pickle
6
7
8 # from LeNet5 import LeNetbh

9

10 def get_data_loaders(batch_size: int = 64, dataset: str = "mnist"):

11 o

12 Load MNIST or CIFAR-10 datasets and return Dataloaders with resized 32z32 inputs.

13 :param batch_size: Batch stize for DataLoader.

14 :param dataset: Dataset to load (’mnist’ or ’cifar’).

15 :return: Train and test DatalLoaders for the selected dataset.

16 e

17 if dataset == "mnist":

18 transform = transforms.Compose ([

19 transforms.Resize ((32, 32)),

20 transforms.ToTensor (),

21 transforms.Lambda(lambda x: x.repeat(3, 1, 1)), # Repeat grayscale 3 times
22 iD]

23

24 train_data = datasets.MNIST(root=’./data’, train=True, download=True, transform=transform)
25 test_data = datasets.MNIST(root=’./data’, train=False, download=True, transform=transform)
26

27 elif dataset == "cifar":

28 transform = transforms.Compose ([

29 transforms.Resize ((32, 32)),

30 transforms.ToTensor (),

31 n

32

33 train_data = datasets.CIFAR10(root=’./data’, train=True, download=True, transform=transform)
34 test_data = datasets.CIFAR10(root=’./data’, train=False, download=True, transform=transform)
35

36 else:

37 raise ValueError("Invalid dataset. Choose ’mnist’ or ’cifar’.")

38

39 train_loader = DatalLoader (train_data, batch_size=batch_size, shuffle=True)

40 test_loader = DatalLoader (test_data, batch_size=batch_size, shuffle=False)

41

42 return train_loader, test_loader

43

44 if __name__ == "__main__":

45 batch_size = 32

46 epochs = 10

47

48 # dataset = "mnist"

49 dataset = "cifar"

50

51 train_loader, test_loader = get_data_loaders(batch_size=batch_size, dataset=dataset)
52

53 batch = next(iter(train_loader))

54 input_data, label = batch

55 input_data = input_data.numpy ()

56 label = label.numpy ()

57

58 model = CNN(input_shape=(3, 32, 32), num_classes=10)
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60
61

63
64
65

66

68
69
70
71
72
73
74

76
7
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94

# adam
adam_runs = {}
for i in range(3):
model = CNN(input_shape=(3, 32,

32), num_classes=10)

training_accuracies = model.train(input_data,

label,
epochs,
learning_rate=0.01,

optimizer="adam")

test_accuracy = model.getAccuracy(test_loader)

adam_runs[i] = (training_accuracies, test_accuracy)

with open(f"{dataset}_adam_runs.pkl",

pickle.dump(adam_runs, f)

# GD
gd_runs = {}
for i in range (3):
model = CNN(input_shape=(3, 32,

"wb") as f:

32), num_classes=10)

training_accuracies = model.train(input_data,

label,
epochs,,
learning_rate=0.001,

optimizer="gd")

test_accuracy = model.getAccuracy(test_loader)

gd_runs[i] = (training_accuracies, test_accuracy)

with open(f"{dataset}_gd_runs.pkl",
pickle.dump (gd_runs, f)

"wb") as f:

Listing 6: data_loader.py
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