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2 XAVIER INITIALIZATION

1 Introduction

Our previous work focused on implementing a foundational Feedforward Neural Network (FNN) in Python,

where we developed a modular, object-oriented architecture capable of performing supervised learning tasks.

This initial implementation featured forward and backward propagation for computing network outputs and

calculating loss gradients, respectively, utilizing both standard and stochastic gradient descent for parameter

optimization. Previously, the network’s effectiveness was demonstrated across three distinct applications:

simple regression, modeling the Van der Pol system’s one-step reachability, and classifying handwritten digits

from the MNIST dataset.

While our initial implementation provided valuable insights into multi-layer neural networks and fun-

damental learning algorithms, we observed limitations when scaling to deeper architectures with three or

more layers. This challenge aligns with a well-documented phenomenon in neural network training, where

traditional gradient descent methods become less effective as network depth increases. The current project

builds upon our previous implementation to address these limitations by incorporating more sophisticated

optimization algorithms and initialization techniques designed specifically for deep learning applications.

The primary objective of this updated implementation is to enhance our existing FNN implementation

with four advanced techniques:

1. Xavier Initialization, which establishes optimal initial weight distributions based on layer dimensions

to facilitate better gradient flow

2. Nesterov Momentum-Based Learning, which introduces momentum terms to accelerate conver-

gence and avoid local minima

3. Adam (Adaptive Moment Estimation), which combines the benefits of momentum with adaptive

learning rates

4. Newton’s Method, which utilizes second-order derivatives to improve optimization efficiency

Our implementation maintains the original modular architecture while introducing these new optimiza-

tion strategies and initialization method, allowing for direct performance comparisons with our previous

gradient descent approaches. We evaluate these methods using our established MNIST classification task

and introduce the Iris Dataset from scikit-learn specifically chosen to challenge deeper network architec-

tures. This comparative analysis focuses on key performance metrics including training time, convergence

rate (measured in epochs), and prediction accuracy on holdout test sets.

Through this extension of our previous work, we aim to demonstrate the practical benefits and limitations

of different optimization strategies and initialization techniques in deep learning, while developing a deeper

understanding of the mathematical principles that underpin these advanced algorithms. This report details

our implementation approach, provides comprehensive performance comparisons, and offers insights into the

relative strengths of each method in different learning contexts.

2 Xavier Initialization

Xavier initialization is a weight initialization technique designed to keep the scale of gradients roughly the

same in all layers of a neural network. This is particularly important in deep networks where improper

initialization can lead to either vanishing or exploding gradients. The method sets initial weights by drawing
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3 NESTEROV MOMENTUM-BASED LEARNING

from a uniform distribution with limits calculated based on the number of input and output connections in

the network layers.

In our FNN architecture, we implemented Xavier initialization by adding it as an initialization option in

our Layer class. The initialization is performed through the xavier init helper method:

1 def _xavier_init(self , n_input , n_output):

2 """

3 Helper method for Xavier initialization with uniform distribution .

4 """

5 limit = np.sqrt (0.5 / (n_input + n_output))

6 return np.random.uniform(-limit , limit , (n_input+1, n_output))

The implementation follows these key principles:

1. The limit for the uniform distribution is calculated as sqrt(0.5 / (fan in + fan out)), where:

– fan in is the number of input connections (n input)

– fan out is the number of output connections (n output)

2. The weights matrix includes an additional row for the bias term (n input+1)

3. The initialization is selectable through the Layer constructor:

1 def __init__(self , n_input , n_output , init_type , activation):

2 if init_type == ’xavier ’:

3 self.weights = self._xavier_init(n_input , n_output)

4 else:

5 self.weights = np.random.uniform(-1, 1, (n_input+1, n_output))*.5

This implementation helps maintain stable gradients during training by ensuring that the variance of

the weights is appropriate for the layer dimensions. The variance scaling helps prevent the aforementioned

vanishing and exploding gradient problems, particularly in deeper networks where these issues are more

pronounced.

3 Nesterov Momentum-Based Learning

Nesterov Momentum-Based Learning is an advanced optimization technique that improves upon traditional

momentum by calculating gradients at a “look-ahead” position. This approach allows the algorithm to be

more responsive to changes in the gradient, leading to better convergence rates than standard momentum

methods. The key innovation is that it first applies the velocity to the parameters before computing the

gradient, providing a more accurate update direction.

Implementation

Our implementation of Nesterov Momentum is integrated into the FNN class with several key components:

1. Initialization of momentum-related parameters:

1 def __init__(self , layers , momentum =0.9, use_nesterov=False):

2 self.layers = layers

3 self.momentum = momentum

4 self.use_nesterov = use_nesterov

5 # Initialize velocities for each layer

6 for layer in self.layers:

7 layer.velocity = np.zeros_like(layer.weights)
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4 ADAM ALGORITHM

2. The core Nesterov update mechanism:

1 def nesterov_momentum_update(self , gradients_W , learning_rate):

2 for layer , grad_W in zip(self.layers , gradients_W):

3 # Update velocity

4 layer.velocity = self.momentum * layer.velocity - learning_rate * grad_W

5 # Update weights using Nesterov momentum

6 layer.weights += layer.velocity

3. Integration with stochastic gradient descent:

1 def sgd(self , X, y, batch_size , learning_rate , use_adam , loss_func=’mse’):

2 # ...

3 if self.use_nesterov:

4 # Look ahead with current velocity

5 for layer in self.layers:

6 layer.weights += self.momentum * layer.velocity

7

8 # Forward pass with look -ahead weights

9 y_pred = self.forward(X_batch)

10

11 # Revert weights

12 for layer in self.layers:

13 layer.weights -= self.momentum * layer.velocity

14

15 # Backward pass

16 gradients = self.backward(y_batch , y_pred , loss_func)

17

18 # Update with Nesterov momentum

19 self.nesterov_momentum_update(gradients , learning_rate)

The implementation follows these key steps:

1. Look-Ahead Step: Before computing gradients, we temporarily update the weights using the current

velocity.

2. Gradient Computation: We compute the gradient at this look-ahead position.

3. Weight Update: The velocity is updated using the computed gradient, and then applied to the

weights.

This approach differs from standard momentum in that it computes gradients at the predicted next posi-

tion rather than the current position, allowing for more accurate corrections to the optimization trajectory.

The momentum parameter (default 0.9) determines how much of the previous velocity is retained in each

update, helping to smooth out oscillations while maintaining movement in promising directions.

Our implementation allows for easy switching between standard SGD and Nesterov momentum through

the use nesterov flag, making it simple to compare performance between the two approaches.

4 Adam Algorithm

Adam, which stands for Adaptive Moment Estimation, is well suited for training deep neural networks due

to its ability to compute individual adaptive learning rates for different parameters. It customizes each

parameter’s learning rate based on its gradient history, which helps the neural network learn efficiently

as a whole. Here are a few algorithms that attempt momentum-based learning and parameter-specific

adaptations, which Adam builds upon and improves:
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4.1 AdaGrad 4 ADAM ALGORITHM

• AdaGrad: AdaGrad adjusts the learning rate based on the sum of the squared gradients for each

parameter. This allows it to adapt to the geometry of the problem, making it useful for sparse data.

However, its main limitation is that the learning rate monotonically decays, often leading to premature

convergence. This makes it unsuitable for non-sparse, larger-scale problems.

• RMSProp: RMSProp modifies AdaGrad by using a moving average of squared gradients rather than

the sum, which helps to address the issue of monotonically decaying learning rates. While RMSProp is

more efficient for non-sparse problems and often leads to faster convergence, it still does not incorporate

momentum, which can lead to oscillations in gradient directions.

• Adam: Adam combines the best aspects of both AdaGrad and RMSProp. It incorporates momentum

through the use of moving averages of both the gradients (first moment) and the squared gradients

(second moment). This allows Adam to adaptively adjust learning rates while also leveraging past

gradient information for faster convergence. Furthermore, by bias-correcting the moment estimates,

Adam prevents the early iterations from having a disproportionate effect on the parameter updates,

which leads to more stable and effective optimization, especially for deep neural networks.

4.1 AdaGrad

The AdaGrad algorithm keeps track of the aggregated square magnitude of the partial derivative with respect

to each parameter over the course of the algorithm

Let Ai be the aggregate value for the ith parameter, then in each iteration, the following update is

performed:

Ai ← Ai +

(
∂L

∂wi

)2

Where the update for the ith parameter wi is as follows:

wi ← wi −
α√
Ai

(
∂L

∂wi

)
Scaling the derivative inversely with Ai is a kind of ”signal-to-noise” normalization because Ai only

measures the historical magnitude of the gradient rather than it sign. As a result, the progress of AdaGrad

will eventually stop making progress. It also uses “stale” scaling factors, which can decrease inaccuracy due

to their “ancient” history.

4.2 RMSProp

Instead of simply adding the squared gradients to estimate Ai, RMSProp uses exponential averaging, so the

progress is not slowed prematurely from aggregated values like in AdaGrad. RMSProp introduces a decay

factor, ρ ∈ (0, 1), and weight the squared partial derivatives occurring t updates ago by ρt. So, if Ai is the

exponentially averaged value of the ith parameter wi, then we update Ai as follows:

Ai ← ρAi + (1− ρ)

(
∂L

∂wi

)2

We take the square root of this value for each parameter to normalize its gradient, then the following

update is used for the global learning rate, α:
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4.3 Adam 4 ADAM ALGORITHM

wi ← wi −
α√
Ai

(
∂L

∂wi

)
The drawback of RMSProp is that the running estimate, Ai, of the second-order moment is biased in

early iterations, meaning early iterations will have a larger impact than later ones.

4.3 Adam

The Adam algorithm uses a similer “signal-to-noise” normalization as AdaGrad and RMSProp by incorpo-

rating momentum into the update. Ai, the exponentially averaged value of the ith parameter wi is updated

in the same way as RMSProp:

Ai ← ρAi + (1− ρ)

(
∂L

∂wi

)2

And is implemented in our fnn.py class as follows:

1 for i, gradient in enumerate(gradients_W):

2 self.A[i] = rho*self.A[i] + (1 - rho) * (gradient ** 2)

Where ρ = 0.999. At the same time, an exponentially smoothed value of the gradient is maintained for

which the ith component is denoted by Fi. This smoothing is performed with a different decay parameter,

ρf :

Fi ← ρfFi + (1− ρf )

(
∂L

∂wi

)
And is implemented as follows in our fnn.py class:

1 for i, gradient in enumerate(gradients_W):

2 self.F[i] = rho_f * self.F[i] + (1-rho_f) * gradient

Where ρf = 0.9. Then, the following update is used at learning rate αt at the tth iteration:

wi ← −
αt√
At

Fi

And is implemented as follows in our fnn.py class, along with the bias adjustment calculation:

1 for i, layer in enumerate(self.layers):

2

3 A_hat_i = self.A[i] / (1 - (rho ** self.t))

4 F_hat_i = self.F[i] / (1 - (rho_f ** self.t))

5

6 # Calculate alpha_t for the current time step

7 alpha_t = learning_rate * ((np.sqrt(1 - (rho ** self.t))) / (1 - (rho_f ** self.t)))

8

9 # Calculate the adaptive step

10 adaptive_step = alpha_t * F_hat_i / (np.sqrt(A_hat_i) + epsilon)

11

12 # Update weights

13 layer.weights -= adaptive_step

Both Fi and Ai are initialized to zero, which causes bias in early iterations. Our implementation uses
√
A+ ϵ for better conditioning, where ϵ = 1e − 8. The Adam algorithm is extremely attractive in training

deep-neural-networks because of its incorporation of adaptive learning rates for each parameter, as well as
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5 NEWTON’S METHOD

its ability to adjust based on both first and second moments of the gradients, making it robust to sparse

gradients and noisy data.

5 Newton’s Method

Many of the most common optimization algorithms used in neural networks use first-order partial derivatives.

Second order methods, including Newton’s Method, allow us to include information about how fast the

gradient changes by computing second-order partial derivatives. When gradient changes are large, large

updates can result in poor optimization results. Newton’s Method allows for more robust updates based on

the curvature of the loss function, and so will not be as impacted by large instantaneous rates of change in

the gradient.

Implementing Newtons’ Method in code proved to be a challenging task, and as a result we explored many

different approaches to calculating the second order partial derivatives and obtaining the Hessian matrix.

The Hessian matrix is defined by Hij =
∂2L(M)
∂wiwj

. It contains the second derivative of the loss with respect

to each pairwise combination of weights.

Newton’s Method uses the Hessian to iteratively update the weights according to the following iterative

equation:

W (k+1) ←W (k) − αH−1∇L(W (k))

This section, we describe our initial attempts at obtaining the hessian matrix and applying newton’s

method in our code. We attempted both a full hessian method, and approximating the hessian by calculating

only the diagonal elements during back propagation.

The modified portion of the assignment asks us to illustrate how the second-order derivatives in a Hessian

is computed step by step for a single chain of neurons. We had two team members working in parallel on

this portion, and due to time constraints were unable to coordinate a final, combined solution, so we present

both results (section 5.3 and 5.4).

5.1 Full Hessian Method

The full hessian method was an attempt to calculate the hessian via a closed form solution.

5.2 Diagonal Approximation Method

Computing the full hessian matrix, particularly the cross-weight terms is a difficult and computationally

intensive task. We attempted to approximate the hessian by only calculating the diagonal terms of the

hessian in our backpropagation algorithm.

Note that this method was implemented before the second part of the assignment was completed, so

our understanding of Newton’s method and calculating the second order derivatives at this point was still

developing.

5.2.1 Implementation Details

The implementation follows closely the methods in the FNN and Layer that implement the backpropagation

algorithm to calculate the gradients.

University of New Mexico 9 CS 4/591, Fall 2024



5.3 Backpropogation with the Second Order Derivative 5 NEWTON’S METHOD

The FNN class contains the method hessian diagonal backward which begins by calculating the deriva-

tive of the loss using the output nodes, and then loops backwards through the layers in the network, obtain-

ing their diagonal second derivatives, and propagating them to previous layers using the hessian diagonal

method.

The hessian diagonal method in the Layer class begins with the propagated partial derivatives, then

calculates the first and second derivative of the activation function with respect to the forward values at this

layer.

We attempt to calculate the second order partial derivatives that make up the diagonal elements of the

hessian matrix by applying the chain rule and product rule to the gradient. We obtain the term ∂L

w2
i
from

this part.

We then update the backpropagation term, which represents the gradient with respect to the loss for the

current layer.

It represents a first attempt to use the chain rule and product rule to compute the second-order derivatives

with backpropogation. However, after performing the simpler exercise that involved working through the

backpropagation steps, we are no longer convinced of the validity of this implementation.

5.3 Backpropogation with the Second Order Derivative

The following algorithm is used to calculate the first order partial derivatives using backpropogation:

Figure 1: Algorithm for backpropogation provided in lecture.

We can extend this algorithm in the following way to obtain the second order partial derivatives. The

forward phase remains the same, so we begin by modifying the backward phase.

We use the same notation as the algorithm where aki is the pre-activation value of neuron i in layer k,

and hk
i is the post-activation value of neuron i in layer k.

Step 1:

Compute the second order derivatives ∂2L

∂h
2(k)
i

and ∂2L

∂h
(k)
i h

(k)
j

for each output neuron such that the output values

are replaced by the corresponding y samples(s):

∂2L

∂y2i
and

∂2L

∂yiyj

Step 2:

Compute the pre-activation second order derivative for each output neuron, ∂2L

∂a
2(k)
i

and ∂2L

∂a
(k)
i a

(k)
j

.
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5.3 Backpropogation with the Second Order Derivative 5 NEWTON’S METHOD

If ∂L

∂a
(k)
i

= ∂L

∂h
(k)
i

⊙ Φ′
k(a

(k)), then:

∂2L

∂a
(k)2

i

=
∂

∂a
(k)
i

(
∂L

∂h
(k)
i

⊙ Φ
′
(a

(k)
i )

)

=
∂L

∂h
(k)
i

⊙ Φ
′′
(a

(k)
i ) +

∂2L

∂h
(k)
i

⊙ Φ
′
(a

(k)
i )

We also need:

∂2L

∂a
(k)
i a

(k)
j

=
∂L

∂a
(k)
i

(
∂L

∂a
(k)
j

)

=
∂L

∂a
(k)
i

(
∂L

∂h
(k)
j

⊙ Φ
′
(a

(k)
j )

)

=
∂2L

∂a
(k)
i h

(k)
j

⊙ Φ
′
(a

(k)
j ) +

∂L

∂h
(k)
j

⊙ Φ
′′
(a

(k)
j )

∂a
(k)
j

∂a
(k)
i

Step 3:

Repeatedly compute the second order derivatives for layers k = K − 1, . . . , 2:

We are given the following first order derivatives ∂L

∂h
(k)
i

= w(k+1) ∂L

∂a
(k+1)
i

and ∂L

∂a
(k+1)
i

∂L

∂h
(k)
i

⊙ Φ
′

i(a
(k)
i ).

We obtain the second order derivatives:

∂2L

∂h
2(k)
i

=
∂

∂h
2(k)
i

(
w(k+1) ∂L

∂a(k+1)

)
= w(k+1) ∂2L

∂a
2(k+1)
i

∂2L

∂a
2(k)
i

=
∂

∂h
(k)
i

(
∂L

∂h
(k)
i

⊙ Φ
′
(a

(k)
i )

)

=
∂L

∂h
(k)
i

⊙ Φ
′′
(a

(k)
i ) +

∂2L

∂hi
⊙ Φ

′
(a

(k)
i )

So,

∂2L

∂h
2(k)
i

= w(k+1)

(
∂L

∂hk
i

⊙ Φ
′′
(a

(k)
i ) +

∂2L

∂h
(k)
i

⊙ Φ
′
(a

(k)
i )

)

Step 4:

Compute the second order derivative of the loss function with respect to the weights.

We are given the following first order derivative: ∂L
∂W (k) = ∂L

∂a
(k)
i

(h
(k−1)
i ).
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5.3 Backpropogation with the Second Order Derivative 5 NEWTON’S METHOD

We obtain the second order derivatives:

∂2L

∂2w
(k)
i

=
∂

∂a
(k)
i

(
∂L

∂a
(k)
i

h
(k−1)
i

)

=
∂

∂a
(k)
i

(
∂L

∂a
(k)
i

Φ(a
(k−1))
i

)

=
∂L

∂a
(k)
i

Φ
′
(a

(k−1)
i ) +

∂2L

∂a
2(k)
i

Φ(a
(k−1)
i )

∂a
(k−1)
i

w
(k)
i

∂2L

∂w
(k)
i ∂w

(k)
j

=
∂

∂a
(k)
i

(
∂L

∂a
(k)
j

Φ(a
(k−1)
j )

)
∂a

(k−1)
j

∂wj

=

(
∂2L

∂a
(k)
i ∂a

(k)
j

Φ(a
(k−1)
i ) +

∂L

∂a
(k)
i

Φ′(a
(k−1)
i )

∂a
(k−1)
i

∂w
(k)
j

)
∂a

(k)
j

∂w
(k)
j

5.3.1 Demonstration of Single Chain of Neurons (Case 1)

We demonstrate the backpropagation algorithm on a chain of five neurons as seen in figure 2.

Figure 2: Algorithm for backpropogation provided in lecture.

We begin with a chain of neuron

Step 1

Compute ∂2L
∂y2

∂2L

∂y21
= 2

Step 2

Compute ∂2L
a2
4
, where a1 is the pre-activation value of y.

∂2L

∂a24
=

∂L

∂y
⊙ Φ

′′
(a4) +

∂2L

∂y
⊙ Φ

′
(a4)

= 2(ytrue − y)Φ(a4)
′′
+ 2Φ(a4)
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5.3 Backpropogation with the Second Order Derivative 5 NEWTON’S METHOD

Step 3

For layers (4,3,2) we repeatedly compute the second order derivatives of the layer outputs by propagating

backwards.

Hidden Layer 4

∂2L

∂2h3
= w4

∂2L

∂a21

= w4

(
∂L

y
Φ

′′
(a4) +

∂2L

∂y2
Φ

′
(a4)

)
= w4

(
2(ytrue − y)Φ

′′
(a4) + 2Φ

′
(a4)

)

∂2L

∂2a3
=

∂L

∂h3
Φ

′′
(a3) +

∂2L

∂2h3
Φ

′
(a3)

Hidden Layer 3

∂2L

∂2h2
= w3

∂2L

∂a23

= w3

[
∂L

∂h3
Φ

′′
(a3) +

∂2L

∂2h3
Φ

′
(a3)

]

∂2L

∂a22
=

∂L

∂h2
Φ

′′
(a2) +

∂2L

∂h2
2

Φ
′
(a2)

Hidden Layer 2

∂2L

∂h1
= w2

∂2L

∂a22

= w2

[
∂L

∂2h2
Φ

′′
(a2) +

∂2L

∂2h2
Φ

′
(a2)

]

∂2L

∂h1
= w2

∂2L

∂a22

w2

[
∂L

∂h1
Φ

′′
(a1) +

∂2L

∂h2
1

Φ
′
(a1)

]
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5.4 Case 1 5 NEWTON’S METHOD

Step 4

Now we can calculate the derivative of the losses with respect to the weights that we can use to populate

the Hessian matrix. Since the matrix is symmetric, we compute the upper triangular part which we can use

to fill the lower triangular part.

∂2L

∂w2
4

=
∂L

∂a3
Φ

′
(a3) +

∂2L

∂a23
Φ(a3)

∂2L

∂w2
3

=
∂L

∂a2
Φ

′
(a2) +

∂2L

∂a22
Φ(a2)

∂2L

∂w2
2

=
∂L

∂a1
Φ

′
(a1) +

∂2L

∂a21
Φ(a1)

∂2L

∂w2
1

=
∂L

∂x
Φ

′
(x) +

∂2L

∂x2
Φ(x)

∂2L

∂w
(k)
i ∂w

(k)
j

=

(
∂2L

∂a
(k)
i ∂a

(k)
j

Φ(a
(k−1)
i ) +

∂L

∂a
(k)
i

Φ′(a
(k−1)
i )

∂a
(k−1)
i

∂w
(k)
j

)
∂a

(k)
j

∂w
(k)
j

∂2L

∂w4∂w3
=

(
∂2L

∂a4∂a3
Φ(a3) +

∂L

∂a4
Φ′(a3)

∂a3
∂w3

)
∂a4
∂w4

∂2L

∂w3∂w2
=

(
∂2L

∂a3∂a2
Φ(a2) +

∂L

∂a3
Φ′(a2)

∂a2
∂w2

)
∂a3
∂w3

∂2L

∂w2∂w1
=

(
∂2L

∂a2∂a1
Φ(a1) +

∂L

∂a2
Φ′(a1)

∂a1
∂w1

)
∂a2
∂w2

5.4 Case 1

Per the alternate assignment: ”Illustrate how the entries (second-order derivatives) in a Hessian is computed

step by step on the following example: Case 1: A neural network which has 1 input, 1 output and 3 hidden

layers. Each layer has only one neuron. (It is like a chain of 5 neurons.)

Variable 1 2 3 4

x 2.000 Note: σ is tanh
y 4.000
w 0.460 0.500 -0.139 0.496
z 0.920 0.363 -0.048 -0.024

σ(z) 0.726 0.348 -0.048 -0.024
σ′(z) 0.473 0.879 0.998 0.999
σ′′(z) -0.687 -0.611 0.096 0.048

The loss function is the Mean Squared Error (MSE): L = 1
2 (ŷ − y)2

Note: When running case1Newton, the factor of 2 was removed in layer’s backward method to reflect this

MSE function. self.z, self.a, self.activation deriv(z) and self.activation second deriv were printed to calculate

the forward pass. A random seed of 24 on random uniform initialization produced the weights. x and y were

selected for simpler computation.

To calculate the error signal at the output layer: ∂L
∂ŷ = ∂

∂ŷ

(
1
2 (ŷ − y)2

)
= ŷ − y
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5.4 Case 1 5 NEWTON’S METHOD

Next, ŷ = σ(z4), so
∂ŷ
∂z4

= σ′(z4)

Using Chain rule: ∂L
∂z4

= ∂L
∂ŷ ·

∂ŷ
∂z4

= (ŷ − y) · σ′(z4)

Since z4 = w4 · σ(z3), we have: ∂z4
∂w4

= σ(z3) = a3

Getting our first gradient: ∂L
∂w4

= ∂L
∂z4
· ∂z4
∂w4

= (ŷ − y) · σ′(z4) · a3

For: ∂L
∂w3

, we first need ∂L
∂a3

, which we propagate back using ∂L
∂z4

.
∂L
∂a3

= ∂L
∂z4
· ∂z4∂a3

and ∂z4
∂a3

= w4, so
∂L
∂a3

= (ŷ − y) · σ′(z4) · w4

Since a3 = σ(z3) and z3 = w3 · a2 , ∂a3

∂w3
= σ′(z3) · a2 per chain rule.

Getting our second gradient: ∂L
∂w3

= ∂L
∂a3
· ∂a3

∂w3
= (ŷ − y) · σ′(z4) · w4 · σ′(z3) · a2

For: ∂L
∂w2

, we first need ∂L
∂a2

, which we propagate back using ∂L
∂z3

.
∂L
∂a2

= ∂L
∂a3
· ∂a3

∂a2
and ∂a3

∂a2
= w3 · σ′(z3), so

∂L
∂a2

= (ŷ − y) · σ′(z4) · w4 · σ′(z3) · w3

Since a2 = σ(z2) and z2 = w2 · a1 , ∂a2

∂w2
= σ′(z2) · a1 per chain rule.

Getting our third gradient: ∂L
∂w2

= ∂L
∂a2
· ∂a2

∂w2
= (ŷ − y) · σ′(z4) · w4 · σ′(z3) · w3 · σ′(z2) · a1

For: ∂L
∂w1

, we first need ∂L
∂a1

, which we propagate back using ∂L
∂z2

.
∂L
∂a1

= ∂L
∂a2
· ∂a2

∂a1
and ∂a2

∂a1
= w2 · σ′(z2), so

∂L
∂a1

= (ŷ − y) · σ′(z4) · w4 · σ′(z3) · w3 · σ′(z2) · w2

Since a1 = σ(z1) and z1 = w1 · x , ∂a1

∂w1
= σ′(z1) · x per chain rule.

Getting our fourth gradient: ∂L
∂w1

= ∂L
∂a1
· ∂a1

∂w1
= (ŷ − y) · σ′(z4) · w4 · σ′(z3) · w3 · σ′(z2) · w2 · σ′(z1) · x

Weight Gradient
(
∂L
∂w

)
w4 0.19415525
w3 -0.69265235
w2 0.17661406
w1 0.11506182

Table 1: Gradients of the Loss with Respect to Each Weight

Gradients were calculated by printing grad W in layer’s backward method. They were confirmed by hand

calculation.

5.4.1 Hessian Calculation

We will need the first order error propagations, they are collected here:

δ4 = (ŷ − y) · σ′(z4) = −4.02165237
δ3 = δ4 · w4 · σ′(z3) = −1.9919189
δ2 = δ3 · w3 · σ′(z2) = 0.24329895

δ1 = δ2 · w2 · σ′(z1) = 0.05753091

Error propagations were calculated by printing dL dout after ”dL dout *= activation deriv” in layer’s back-

ward method. They were confirmed by hand calculation.

5.4.2 Second Order Backward Pass 1

Let’s begin by passing back ∂L
∂w1

as the ”loss” in a second order backpropagation.
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5.4 Case 1 5 NEWTON’S METHOD

5.4.3 ∂2L
∂w1∂w4

(Output Layer)

From: ∂L
∂w4

= δ4 · a3, we can get: ∂2L
∂w1∂w4

= ∂
∂w1

(
∂L
∂w4

)
= ∂

∂w1
(δ4 · a3)

Using Product Rule: ∂
∂w1

(uv) = ∂u
∂w1
· v + u · ∂v

∂w1
, we get: ∂2L

∂w1∂w4
= ∂δ4

∂w1
· a3 + δ4 · ∂a3

∂w1

Plugging in from below, ∂2L
∂w1∂w4

= (−0.023) · (−0.048) + (−4.022) · (−.058) = 0.001 + 0.233 = 0.234

δ
(2)
4 = ∂δ4

∂w1
=
(

∂ŷ
∂w1
· σ′(z4) + (ŷ − y) · σ′′(z4) · ∂z4

∂w1

)
δ
(2)
4 = ∂δ4

∂w1
= ((−.029) · 0.999 + (−4.024) · 0.048 · (−.029)) = (−0.029) + 0.006 = −0.023

To get ∂ŷ
∂w1

:

ŷ = σ(w4 · a3), so ∂ŷ
∂w1

= σ′(z4) · w4 · ∂a3

∂w1
= 0.999 · 0.496 · (−0.058) = (−0.029)

To get ∂z4
∂w1

:

z4 = w4 · a3, so ∂z4
∂w1

= w4 · ∂a3

∂w1
= 0.496 · (−0.058) = (−0.029)

To get ∂a3

∂w1
:

a3 = σ(z3), so
∂a3

∂w1
= σ′(z3) · ∂z3

∂w1
= 0.998 · (−0.058) = (−0.058)

To get ∂z3
∂w1

:

z3 = w3 · a2, so ∂z3
∂w1

= w3 · ∂a2

∂w1
= (−0.139) · 0.416 = (−0.058)

To get ∂a2

∂w1
:

a2 = σ(z2), so
∂a2

∂w1
= σ′(z2) · ∂z2

∂w1
= 0.879 · 0.473 = 0.416

To get ∂z2
∂w1

:

z2 = w2 · a1, so ∂z2
∂w1

= w2 · ∂a1

∂w1
= 0.500 · 0.946 = 0.473

To get ∂a1

∂w1
:

a1 = σ(z1), so
∂a1

∂w1
= σ′(z1) · ∂z1

∂w1
= 0.473 · 2.000 = 0.946

To get ∂z1
∂w1

:

z1 = w1 · x, so ∂z1
∂w1

= x = 2.000

5.4.4 ∂2L
∂w1∂w3

(Layer 3)

From: ∂L
∂w3

= δ3 · a2, we can get: ∂2L
∂w1∂w3

= δ
(2)
3 · a2 + δ3 · ∂a2

∂w1

∂2L
∂w1∂w3

= −.0003 · 0.348 + (−1.992) · 0.416 = −0.829
δ
(2)
3 = ∂δ3

∂w1
=
(

∂δ4
∂w1
· w4 · σ′(z3) + δ4 · w4 ·

(
σ′′(z3) · ∂z3

∂w1

))
δ
(2)
3 = ∂δ3

∂w1
= ((−0.023) · 0.496 · 0.998 + (−4.022) · 0.496 · (0.096 · (−0.058))) = −.0003

5.4.5 ∂2L
∂w1∂w2

(Layer 2)

From: ∂L
∂w2

= δ2 · a1, we can get: ∂2L
∂w1∂w2

= δ
(2)
2 · a1 + δ2 · ∂a1

∂w1

∂2L
∂w1∂w2

= −0.080 · 0.726 + 0.243 · 0.946 = 0.172

δ
(2)
2 = ∂δ2

∂w1
=
(

∂δ3
∂w1
· w3 · σ′(z2) + δ3 · w3 ·

(
σ′′(z2) · ∂z2

∂w1

))
δ
(2)
2 = ∂δ2

∂w1
= ((−0.0003) · (−0.139) · 0.879 + (−1.992) · (−0.139) · ((−0.611) · 0.473)) = −0.080

5.4.6 ∂2L
∂w2

1
(Layer 1)

From: ∂L
∂w1

= δ1 · x, we can get: ∂2L
∂w2

1
= δ

(2)
1 · x+ δ1 · ∂x

∂w1

x is the input and does not depend on w 1 , so ∂x
∂w1

= 0. Therefore ∂2L
∂w2

1
= δ

(2)
1 ·x = (−0.186) · 2.00 = −0.372
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5.4 Case 1 5 NEWTON’S METHOD

δ
(2)
1 = ∂δ1

∂w1
=
(

∂δ2
∂w1
· w2 · σ′(z1) + δ2 · w2 ·

(
σ′′(z1) · ∂z1

∂w1

))
δ
(2)
1 = ∂δ1

∂w1
= ((−0.080) · 0.500 · 0.473 + 0.243 · 0.500 · (−0.687 · 2.000)) = −0.186

5.4.7 Second Order Backward Pass 2

Let’s continue by passing back ∂L
∂w2

as the ”loss” in a second order backpropagation.

5.4.8 ∂2L
∂w2∂w4

(Output Layer)

From: ∂L
∂w4

= δ4 · a3, we can get: ∂2L
∂w2∂w4

= ∂
∂w2

(
∂L
∂w4

)
= ∂

∂w2
(δ4 · a3)

∂2L
∂w2∂w4

= δ
(2)
4 · a3 + δ4 · ∂a3

∂w2
= (−0.242) · (−0.048) + (−4.022) · (−0.606) = 0.012 + 2.437 = 2.449

δ
(2)
4 = ∂δ4

∂w2
=
(

∂ŷ
∂w2
· σ′(z4) + (ŷ − y) · σ′′(z4) · ∂z4

∂w2

)
δ
(2)
4 = ∂δ4

∂w2
= ((−.300) · 0.999 + (−4.024) · 0.048 · (−.301)) = −0.300 + 0.0581 = −0.242

To get ∂ŷ
∂w2

:

ŷ = σ(w4 · a3), so ∂ŷ
∂w2

= σ′(z4) · w4 · ∂a3

∂w2
= 0.999 · 0.496 · −0.606 = −0.300

To get ∂z4
∂w2

:

z4 = w4 · a3, so ∂z4
∂w2

= w4 · ∂a3

∂w2
= 0.496 · −0.606 = −.301

To get ∂a3

∂w2
:

a3 = σ(z3), so
∂a3

∂w2
= σ′(z3) · ∂z3

∂w2
= 0.998 · −0.608 = −0.606

To get ∂z3
∂w2

:

z3 = w3 · a2, so ∂z3
∂w2

= w3 · ∂a2

∂w2
= −0.048 · 0.638 = −0.608

To get ∂a2

∂w2
:

a2 = σ(z2), so
∂a2

∂w2
= σ′(z2) · ∂z2

∂w2
= 0.879 · 0.726 = 0.638

To get ∂z2
∂w2

:

z2 = w2 · a1, so ∂z2
∂w2

= a1 = 0.726

5.4.9 ∂2L
∂w2∂w3

(Layer 3)

From: ∂L
∂w3

= δ3 · a2, we can get: ∂2L
∂w2∂w3

= δ
(2)
3 · a2 + δ3 · ∂a2

∂w2

∂2L
∂w2∂w3

= (−0.004) · 0.348 + (−1.992) · 0.638 = −1.272
δ
(2)
3 = ∂δ3

∂w2
=
(

∂δ4
∂w2
· w4 · σ′(z3) + δ4 · w4 ·

(
σ′′(z3) · ∂z3

∂w2

))
δ
(2)
3 = ∂δ3

∂w2
= (−0.242 · 0.496 · 0.998 + (−4.022) · 0.496 · (0.096 · (−0.606))) = (−0.120) + 0.116 = −0.004

5.4.10 ∂2L
∂w2

2
(Layer 2)

From: ∂L
∂w2

= δ2 · a1, we can get: ∂2L
∂w2

2
= δ

(2)
2 · a1 + δ2 · ∂a1

∂w2

a1 does not depend on w2 , so ∂a1

∂w2
= 0 and ∂2L

∂w2
2
= δ

(2)
2 · a1 = −0.122 · 0.726 = −0.089

δ
(2)
2 = ∂δ2

∂w2
=
(

∂δ3
∂w2
· w3 · σ′(z2) + δ3 · w3 ·

(
σ′′(z2) · ∂z2

∂w2

))
δ
(2)
2 = ∂δ2

∂w2
= (−0.004 · −0.139 · 0.879 + (−1.992) · −0.139 · ((−0.611) · 0.726)) = −0.122

5.4.11 ∂2L
∂w2∂w1

(Layer 1)

The Hessian is symmetrical so ∂2L
∂w2∂w1

is the same value as ∂2L
∂w1∂w2

.
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5.4 Case 1 5 NEWTON’S METHOD

5.4.12 Second Order Backward Pass 3

Let’s continue by passing back ∂L
∂w3

as the ”loss” in a second order backpropagation.

5.4.13 ∂2L
∂w3∂w4

(Output Layer)

From: ∂L
∂w4

= δ4 · a3, we can get: ∂2L
∂w3∂w4

= ∂
∂w3

(
∂L
∂w4

)
= ∂

∂w3
(δ4 · a3)

∂2L
∂w3∂w4

= δ
(2)
4 · a3 + δ4 · ∂a3

∂w3

∂2L
∂w3∂w4

= 0.139 · (−0.048) + (−4.022) · 0.347 = (−0.007) + (−1.396) = −1.403

δ
(2)
4 = ∂δ4

∂w3
=
(

∂ŷ
∂w3
· σ′(z4) + (ŷ − y) · σ′′(z4) · ∂z4

∂w3

)
δ
(2)
4 = ∂δ4

∂w3
= (0.172 · 0.999 + (−4.024) · 0.048 · 0.172) = 0.172− 0.033 = 0.139

To get ∂ŷ
∂w3

:

ŷ = σ(w4 · a3), so ∂ŷ
∂w3

= σ′(z4) · w4 · ∂a3

∂w3
= 0.999 · 0.172(frombelow) = 0.172

To get ∂z4
∂w3

:

z4 = w4 · a3, so ∂z4
∂w3

= w4 · ∂a3

∂w3
= 0.496 · 0.347 = 0.172

To get ∂a3

∂w3
:

a3 = σ(z3), so
∂a3

∂w3
= σ′(z3) · ∂z3

∂w3
= 0.998 · 0.348 = 0.347

To get ∂z3
∂w3

:

z3 = w3 · a2, so ∂z3
∂w3

= a2 = 0.348

5.4.14 ∂2L
∂w2

3
(Layer 3)

From: ∂L
∂w3

= δ3 · a2, we can get: ∂2L
∂w2

3
= δ

(2)
3 · a2 + δ3 · ∂a2

∂w3

a2 does not depend on w3 , so ∂a2

∂w3
= 0 and ∂2L

∂w2
3
= δ

(2)
3 · a2

∂2L
∂w2

3
= 0.002 · 0.348 = .0007

δ
(2)
3 = ∂δ3

∂w3
=
(

∂δ4
∂w3
· w4 · σ′(z3) + δ4 · w4 ·

(
σ′′(z3) · ∂z3

∂w3

))
δ
(2)
3 = ∂δ3

∂w3
= (0.139 · 0.496 · 0.998 + (−4.022) · 0.496 · (0.096 · 0.348)) = 0.069− .067 = .002

5.4.15 ∂2L
∂w3∂w2

(Layer 2)

The Hessian is symmetrical so ∂2L
∂w3∂w2

is the same value as ∂2L
∂w2∂w3

.

5.4.16 ∂2L
∂w3∂w1

(Layer 1)

The Hessian is symmetrical so ∂2L
∂w3∂w1

is the same value as ∂2L
∂w1∂w3

.

5.4.17 Second Order Backward Pass 4

Let’s continue by passing back ∂L
∂w4

as the ”loss” in a second order backpropagation.

5.4.18 ∂2L
∂w2

4
(Output Layer)

From: ∂L
∂w4

= δ4 · a3, we can get: ∂2L
∂w2

4
= ∂

∂w4

(
∂L
∂w4

)
= ∂

∂w4
(δ4 · a3)
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∂2L
∂w2

4
= δ

(2)
4 · a3 + δ4 · ∂a3

∂w4
a3 does not depend on w4 , so ∂a3

∂w4
= 0 and ∂2L

∂w2
4
= δ

(2)
4 · a3

∂2L
∂w2

4
= 0.009 · (−0.048) = 0.0004

δ
(2)
4 = ∂δ4

∂w4
=
(

∂ŷ
∂w4
· σ′(z4) + (ŷ − y) · σ′′(z4) · ∂z4

∂w4

)
To get ∂ŷ

∂w4
:

ŷ = σ(w4 · a3), so ∂ŷ
∂w4

= σ′(z4) · w4 · ∂a3

∂w4
.

a3 does not depend on w4 , so ∂a3

∂w4
= 0 and so ∂ŷ

∂w4
= 0,

thus δ
(2)
4 = ∂δ4

∂w4
=
(
(ŷ − y) · σ′′(z4) · ∂z4

∂w4

)
δ
(2)
4 = ∂δ4

∂w4
= ((−4.024) · 0.048 · (−0.048)) = 0.009

To get ∂z4
∂w4

:

z4 = w4 · a3, so ∂z4
∂w4

= a3 = −0.048

5.4.19 ∂2L
∂w4∂w3

(Layer 3)

The Hessian is symmetrical so ∂2L
∂w4∂w3

is the same value as ∂2L
∂w3∂w4

.

5.4.20 ∂2L
∂w4∂w2

(Layer 2)

The Hessian is symmetrical so ∂2L
∂w4∂w2

is the same value as ∂2L
∂w2∂w4

.

5.4.21 ∂2L
∂w4∂w1

(Layer 1)

The Hessian is symmetrical so ∂2L
∂w4∂w1

is the same value as ∂2L
∂w1∂w4

.

5.4.22 Full Hessian Matrix

The Hessian is a size n2 matrix where n = the total number of weights in the network. Our 4x4 Hessian

takes the following form:

H =


∂2L
∂w2

1

∂2L
∂w1∂w2

∂2L
∂w1∂w3

∂2L
∂w1∂w4

∂2L
∂w2∂w1

∂2L
∂w2

2

∂2L
∂w2∂w3

∂2L
∂w2∂w4

∂2L
∂w3∂w1

∂2L
∂w3∂w2

∂2L
∂w2

3

∂2L
∂w3∂w4

∂2L
∂w4∂w1

∂2L
∂w4∂w2

∂2L
∂w4∂w3

∂2L
∂w2

4


Filling it in with our calculations:

H =


−0.372 0.172 −0.829 0.234

0.172 −0.089 −1.272 2.449

−0.829 −1.272 0.0007 −1.403
0.234 2.449 −1.403 0.0004


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6 Testing

6.1 MNIST Dataset

The MNIST dataset was used to test the performance of Xavier initialization, ADAM, Nesterov-Momentum,

and Newton’s Method on the same neural network architecture. The network was composed of four layers

in total, with two hidden layers containing 64 neurons each. The hidden layers utilized the ReLU activa-

tion function, while the output layer employed the logsoftmax activation function. Below is the Python

implementation that applies these techniques to the MNIST dataset.

6.2 Iris Dataset

The IRIS dataset was used to evaluate the performance of two optimization algorithms—Stochastic Gradient

Descent (SGD) and Adam—on a neural network model. The network architecture consisted of four layers,

including two hidden layers, each containing 10 neurons. ReLU activation functions were used in the hidden

layers, with the output layer utilizing the logsoftmax activation function. The target labels were one-hot

encoded, and the dataset was split into training and testing sets, followed by standardization of the features.

7 Results

7.1 MNIST Dataset

7.1.1 Comparison of ADAM Optimizer and Stochastic Gradient Descent on the MNIST

Dataset

The performance of the ADAM optimizer and the Steepest (Stochastic) Gradient Descent (SGD) was evalu-

ated on the MNIST dataset using a learning rate of 0.0001 over 100 epochs. The comparison, as summarized

in Table 2, is based on two key metrics: computational time and classification accuracy.

In terms of computational efficiency, SGD demonstrated faster execution times compared to ADAM for

both initialization schemes. Specifically, with Uniform initialization, SGD required 115.87 seconds, while

ADAM took 180.92 seconds. Similarly, with Xavier initialization, SGD completed in 108.37 seconds, which

is significantly quicker than ADAM’s 180.92 seconds. This highlights the computational simplicity of SGD,

which may be beneficial in time-critical applications.

However, when evaluating classification accuracy, ADAM outperformed SGD. As shown in Table 2, the

ADAM optimizer achieved an accuracy of 96.85%, compared to 96.27% for SGD with Xavier initialization

and 89.74% with Uniform initialization. This indicates that ADAM’s adaptive learning rate mechanism

contributes to better convergence and overall accuracy on this dataset.

These results suggest a trade-off between computational speed and accuracy. While SGD may be prefer-

able for scenarios requiring faster training times, ADAM’s superior accuracy makes it a better choice for

applications prioritizing predictive performance.

7.1.2 Comparison of Nesterov vs Steepest Gradient Descent on the MNIST Dataset

Nesterov, which is a modification of traditional momentum-based gradient descent, outperforms standard

SGD in this experiment. It achieves a higher accuracy of 96.65% compared to SGD’s accuracy of 96.27%.

Nesterov works by first making a ”look-ahead” step, estimating the gradient based on the momentum, and
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then applying the gradient descent step. This typically allows Nesterov to make more informed updates,

resulting in faster convergence and sometimes better generalization.

On the other hand, SGD with a simple momentum term might be slower in terms of convergence, as seen

in the results. Although SGD showed good performance with an accuracy of 96.27

7.1.3 Comparison of Newton vs Steepest Gradient Descent on the MNIST Dataset

We tested only the approximation version of Newton’s method due to the run time of the alternate closed-

form version. Over epochs, the test accuracy did not improve compared to the initial accuracy, indicating

our model was not properly learning with this version of Newton’s method. The variation of testing accuracy

was within the range of variation from initial accuracy.

Method Time (s) Accuracy (%) Initialization Type

Nesterov 150.63 96.65 Xavier
ADAM 180.92 96.85 Xavier
Newton’s Method Approx 28x28 42.44 11.01 Uniform
Newton’s Method Approx 14x14 44.17 11.52 Uniform
Newton’s Method Approx 28x28 40.68 12.43 Xavier
Newton’s Method Approx 14x14 44.64 9.43 Xavier
Stochastic Gradient Descent (1/2) 115.87 89.74 Uniform
Stochastic Gradient Descent (2/2) 108.37 96.27 Xavier

Table 2: Performance comparison of optimization methods with different initialization types on the MNIST
dataset.

Figure 3: Comparison of accuracy of ADAM and Steepest Gradient Descent on the MNIST dataset
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7.2 Iris Dataset

7.2.1 Comparison of ADAM and Steepest Gradient Descent on the IRIS Dataset

The performance of the ADAM optimizer and Steepest Gradient Descent (SGD) was evaluated on the IRIS

dataset, focusing on computational time, classification accuracy, and model complexity. The comparison, as

summarized in Table 3, highlights notable differences between the two methods under varying configurations.

In terms of accuracy, ADAM consistently achieved 100% classification accuracy, regardless of the model

configuration. This demonstrates its robustness and ability to adapt effectively to the optimization landscape

of the IRIS dataset. In contrast, the performance of SGD was highly sensitive to the initialization scheme

and the number of neurons in the hidden layer. With Xavier initialization and 128 neurons, SGD reached

an accuracy of 40%. However, when configured with Uniform initialization and 64 neurons, SGD achieved

a notable accuracy of 93.33%, indicating that simpler models can perform well with SGD when paired with

the appropriate initialization.

From a computational efficiency perspective, SGD outperformed ADAM. The fastest SGD configuration

(128 neurons with Uniform initialization) completed in just 0.02 seconds, significantly faster than ADAM’s

runtime of 0.06 seconds. This highlights SGD’s suitability for scenarios where rapid computation is a priority,

particularly for simpler models.

Interestingly, SGD demonstrated improved performance with reduced model complexity (64 neurons com-

pared to 128). This suggests that for simpler tasks, reducing the model size can enhance SGD’s convergence

and reduce overfitting. In contrast, ADAM’s consistent accuracy across configurations reflects its strength

in optimizing more complex models without a significant trade-off in computational time.

These results highlight the trade-offs between ADAM and SGD. While ADAM is ideal for achieving high

accuracy with minimal tuning, SGD’s efficiency and compatibility with simpler models make it a viable

choice for lightweight or resource-constrained applications.

7.2.2 Comparison of Nesterov vs Steepest Gradient Descent on the IRIS Dataset

Nesterov, with its momentum-based updates and predictive nature, achieves a perfect accuracy of 100% with

an exceptionally fast training time of just 0.16 seconds. This result highlights the effectiveness of Nesterov in

optimizing the model for the IRIS dataset, where the momentum-based look-ahead step allows the method

to converge quickly and reach an optimal solution.

7.2.3 Comparison of Newton vs Steepest Gradient Descent on the IRIS Dataset

We tested only the approximation version of Newton’s method due to the run time of the alternate closed-

form version. Although it appears based on the results reported in the table 3 that the method experienced

some training success with Xavier, it appears the result is anomalous because on subsequent training runs,

the accuracy is much worse and the training accuracy remains consistent throughout epochs, which indicates

that the model is not learning with this optimization method.
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Method Time (s) Accuracy (%) Initialization Type Neurons/Layer (Hidden)

Nesterov 0.16 100.00 Xavier 128
ADAM 0.06 100.00 Xavier 128
Steepest Gradient Descent (1/4) 0.03 20.00 Xavier 64
Steepest Gradient Descent (2/4) 0.06 40.00 Xavier 128
Steepest Gradient Descent (3/4)* 0.03 93.33 Uniform 64
Steepest Gradient Descent (4/4) 0.02 6.67 Uniform 128
Newton’s Method Approx 0.06 60.00 Xavier 10
Newton’s Method Approx 0.09 20.00 Uniform 10

Table 3: Performance comparison of optimization methods on the IRIS dataset. * indicates notable perfor-
mance within the method’s category.

Figure 4: Comparison of training loss of ADAM and Steepest Gradient Descent on the IRIS dataset

8 Discussion

In this project, we were able to explore different optimization methods and compare them to gradient descent,

which we have been using up until this point to train our models. Of the two datasets we tested, the MNIST

dataset was the most complex. We observed that both Nesterov and ADAM achieved comparable results

to stochastic gradient descent with Xavier initialization. These methods, however, achieved significantly

better performance compared to gradient descent in the IRIS dataset. Although ADAM and Nesterov were

computationally more expensive than gradient descent, the consistency of performance across datasets, may

indicate they are more robust and reliable methods for optimization.

Our implementations of Newton’s Method showed difficulty in training. This is likely due to errors in our

implementation. Working through the exercise of demonstrating the Hessian calculation for a simple chain

of neurons, improved our understanding of this method. It would be interesting to see if we could now obtain

a more accurate implementation of Newton’s method in our code after having worked through this exercise.
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9 Conclusion

In this project, we explored and implemented three advanced optimization algorithms - Nesterov momentum,

Adam, and Newton’s method - on top of the steepest gradient descent algorithm from the midterm project.

These deep learning algorithms were applied to neural networks with at least three layers.

We implemented each algorithm starting with Xavier initialization to ensure proper weight scaling, fol-

lowed by Nesterov momentum to accelerate convergence, the Adam optimizer for adaptive learning rate, and

Newton’s method for second-order optimization. Through systematic testing, we compared these algorithms

with shallow learning techniques using randomly generated datasets.

In conclusion, this assignment highlighted the importance of choosing the right optimization method for

training deep neural networks. The results affirmed that advanced methods like Nesterov momentum, Adam,

and Newton’s method can provide significant improvements over shallow learning algorithms, particularly in

terms of convergence speed and accuracy. However, they also come with trade-offs in terms of computational

cost, especially for Newton’s method. As deep learning continues to evolve, selecting the right algorithm for

a given task will remain a crucial aspect of achieving optimal performance.

Contributions

Jyrus Cadman

Jyrus implemented two fundamental components that significantly impacted the network’s performance

across all optimization methods. He developed the Xavier initialization scheme in the Layer class, which

provides more stable initial weights by accounting for layer dimensions, helping prevent vanishing and ex-

ploding gradients in deeper networks. This initialization method serves as the foundation for all optimization

techniques implemented in this project. Jyrus also implemented the Nesterov Momentum-Based Learning

algorithm in the FNN class, including the look-ahead gradient computation and velocity-based weight up-

dates. His implementation allows for seamless switching between standard SGD and Nesterov momentum

through a simple flag system. Additionally, Jyrus contributed to testing the network’s performance across

different optimization methods, helping evaluate the effectiveness of each approach under various conditions.

Robert McCourt

Robert implemented the ADAM optimizer in the FNN class to improve the efficiency and stability of the

training process. ADAM, which stands for Adaptive Moment Estimation, is an advanced optimization

algorithm that combines the advantages of two other popular optimizers: Momentum and RMSProp. It

helps the model converge faster and more reliably by adapting the learning rate for each parameter based

on the first and second moments of the gradients (i.e., the mean and variance of the gradients). The ADAM

optimizer in this implementation is integrated into the FNN class, and can be activated by simply calling the

train adam or train adam batch functions with the necessary arguments. It allows for a more numerically

stable and efficient training process compared to traditional gradient descent methods like stochastic gradient

descent (SGD).
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Bethany Peña

Bethany assisted Gabriel with the Newton’s Method work. Bethany and Gabriel met to discuss and brain-

storm the Newton’s method work. Based on her initial understandings of backpropagation and the second

order partial derivatives, she attempted to implement a simplified version by computing an approximation

of the Hessian matrix, using only the diagonal terms. She tested this method on both the MNIST dataset

and IRIS datasets, and found the method did not show signs of learning. Once the option of demonstrating

a hessian calculation using the ”case 1” chain of nodes, Bethany attempted to use the backpropagation algo-

rithm presented in lecture to derive a backpropagation algorithm which calculated the second order partial

derivatives needed to populate the hessian matrix (section 5.3). She attempted to demonstrate how this

algorithm would calculate the derivatives needed to create a hessian matrix for the network described in case

1.

Gabriel Urbaitis

Gabriel performed all of the calculations (derivatives and numbers) for Case 1 of Newton’s method (all of

section 5.4). He attempted a closed form solution for the code including the hessian entry method in layer

and hessian matrix and newton update methods in fnn. He attempted to run them on the iris dataset for

case 4, and a lower resolution MNIST dataset in case 3 hessian, but found that the method showed no

signs of learning. He attempted to debug with regularization of the hessian and gradient matrices, different

logsoftmax changes, and other fixes but was unsuccessful so he moved on to the alternate option of calculating

Case 1. Professor Chen asked us to note that we had a smaller team than average (3 undergrads and 1 grad

student (myself). With his assistance and the adjustment down to the single case, we were luckily able to

finish the project just in time.
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10 Appendix

1 import numpy as np

2

3 class FNN:

4 """

5 A Feed -Forward Neural Network.

6 """

7

8 # Initialize the network with a list of layers

9 def __init__(self , layers , momentum =0.9, use_nesterov=False):

10 self.layers = layers

11 self.A = [np.zeros_like(layer.weights) for layer in self.layers]

12 self.F = [np.zeros_like(layer.weights) for layer in self.layers]

13 self.t=1

14 # Add Nesterov -related parameters

15 self.momentum = momentum

16 self.use_nesterov = use_nesterov

17 # Initialize velocities for each layer

18 for layer in self.layers:

19 layer.velocity = np.zeros_like(layer.weights)

20

21 # Perform forward propagation through all layers

22 def forward(self , X):

23 for layer in self.layers:

24 X = layer.forward(X)

25 return X

26

27 """

28 Calculate gradients for all layers.

29 X: Input data

30 y: True labels

31 y_pred: Predicted output from the forward pass

32 loss_func : Loss function (’mse ’ or ’nll ’)

33 """

34 def backward(self , y, y_pred , loss_func=’mse’):

35 if loss_func == ’mse’:

36 dL_dout = 2 * (y_pred - y) / y.shape [0]

37 elif loss_func == ’nll’:

38 dL_dout = y_pred - y

39 gradients_W = []

40 # Proceeding backward through the layers , add each new calculation to the front

41 # to create the gradients array

42 # reg_lambda = 1e-2

43 for layer in reversed(self.layers):

44 grad_W , dL_dout = layer.backward(dL_dout)

45 #grad_W += reg_lambda * layer.weights

46 grad_W = np.clip(grad_W , -.5, .5)

47 gradients_W.insert(0, grad_W)

48 return gradients_W

49

50 def hessian_diagonal_backward(self , y, y_pred , loss_func=’mse’):

51 # Initialize dL_dout based on the loss function

52 if loss_func == ’mse’:

53 dL_dout = 2 * (y_pred - y) / y.shape [0]

54 elif loss_func == ’nll’:

55 dL_dout = y_pred - y

56

57 # Initialize dL_dout_prev for the first pass

58 hessians_diag = []

59

60 # Loop through layers in reverse order to accumulate second -order terms

61 for layer in reversed(self.layers):
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62 # Each layer ’s hessian function should return both hessian_diag and an updated dL_dout

for the next layer

63 hessian_diag , dL_dout = layer.hessian_diagonal(dL_dout)

64 hessians_diag.insert(0, hessian_diag) # Insert at the beginning to accumulate in the

correct order

65

66 return hessians_diag

67

68 def newton_update_diagonal_approx(self , X, y, learning_rate =0.01, loss_func=’mse’):

69 y_pred = self.forward(X)

70 gradients = self.backward(y, y_pred , loss_func)

71 diag_hessians = self.hessian_diagonal_backward(y, y_pred , loss_func)

72

73 # Use Hessians (diagonal) and gradients to apply Newton ’s update rule

74 for layer , grad_W , hessian_diag in zip(self.layers , gradients , diag_hessians):

75 # Prevent division by zero by adding a small constant to hessian_diag

76 # and invert only the diagonal

77 hessian_diag_inv = 1.0 / (hessian_diag + 1e-8)

78 update = learning_rate * (grad_W * hessian_diag_inv)

79 # print( hessian_diag_inv )

80 layer.weights -= update

81

82 # Update weights and biases using gradient descent

83 def gd(self , gradients_W , learning_rate):

84 if self.use_nesterov:

85 self.nesterov_momentum_update(gradients_W , learning_rate)

86 else:

87 for layer , grad_W in zip(self.layers , gradients_W):

88 layer.weights -= learning_rate * grad_W

89

90 def sgd(self , X, y, batch_size , learning_rate , use_adam , loss_func=’mse’):

91 indices = np.arange(X.shape [0])

92 np.random.shuffle(indices)

93

94 for start_idx in range(0, X.shape [0] - batch_size + 1, batch_size):

95 batch_indices = indices[start_idx:start_idx + batch_size]

96 X_batch = X[batch_indices]

97 y_batch = y[batch_indices]

98

99 if self.use_nesterov:

100 # Look ahead with current velocity

101 for layer in self.layers:

102 layer.weights += self.momentum * layer.velocity

103

104 # Forward pass with look -ahead weights

105 y_pred = self.forward(X_batch)

106

107 # Revert weights

108 for layer in self.layers:

109 layer.weights -= self.momentum * layer.velocity

110

111 # Backward pass

112 gradients = self.backward(y_batch , y_pred , loss_func)

113

114 # Update with Nesterov momentum

115 self.nesterov_momentum_update(gradients , learning_rate)

116

117 # Check flag if we want to use adam optimizer

118 elif use_adam:

119 # Forward pass

120 y_pred = self.forward(X_batch)

121 # Backward pass

122 gradients = self.backward(y_batch , y_pred , loss_func)

123

124 self.update_A(gradients)
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125 self.update_F(gradients)

126

127 # Perform adam update

128 self.adam_update(learning_rate)

129

130 else:

131 # Forward pass

132 y_pred = self.forward(X_batch)

133 # Backward pass

134 gradients = self.backward(y_batch , y_pred , loss_func)

135 # Update weights using standard SGD

136 for layer , gradient in zip(self.layers , gradients):

137 layer.weights -= learning_rate * gradient

138

139

140

141 def update_A(self , gradients_W , rho =0.999):

142 for i, gradient in enumerate(gradients_W):

143 self.A[i] = rho*self.A[i] + (1 - rho) * (gradient ** 2)

144

145 def update_F(self , gradients_W , rho_f =0.9):

146 for i, gradient in enumerate(gradients_W):

147 self.F[i] = rho_f * self.F[i] + (1-rho_f) * gradient

148

149 def adam_update(self , learning_rate , rho =0.999 , rho_f =0.9, epsilon =1e-8):

150 for i, layer in enumerate(self.layers):

151

152 A_hat_i = self.A[i] / (1 - (rho ** self.t))

153 F_hat_i = self.F[i] / (1 - (rho_f ** self.t))

154

155 # Calculate alpha_t for the current time step

156 alpha_t = learning_rate * ((np.sqrt(1 - (rho ** self.t))) / (1 - (rho_f ** self.t)))

157

158 # Calculate the adaptive step

159 adaptive_step = alpha_t * F_hat_i / (np.sqrt(A_hat_i) + epsilon)

160

161 # Update weights

162 layer.weights -= adaptive_step

163

164

165 # New method for Nesterov momentum update

166 def nesterov_momentum_update(self , gradients_W , learning_rate):

167 for layer , grad_W in zip(self.layers , gradients_W):

168 # Update velocity

169 layer.velocity = self.momentum * layer.velocity - learning_rate * grad_W

170 # Update weights using Nesterov momentum

171 layer.weights += layer.velocity

172

173 # Train the network using forward and backward propagation

174 def train(self , X, y, learning_rate , epochs , use_adam):

175 print(f"Using adam optimizer ..." if use_adam else "")

176 print(f"Using Nesterov momentum ..." if self.use_nesterov else "")

177

178 for _ in range(epochs):

179 y_pred = self.forward(X)

180 gradients_W = self.backward(y,y_pred)

181

182

183 self.gd(gradients_W , learning_rate)

184

185 def train_adam(self , X, y, learning_rate , epochs):

186 for _ in range(epochs):

187 y_pred = self.forward(X)

188 gradients_W = self.backward(y, y_pred)

189 self.update_A(gradients_W)
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190 self.update_F(gradients_W)

191 self.adam_update(learning_rate)

192 self.t += 1

193

194 def train_adam_batch(self , X, y, learning_rate , epochs , batch_size , loss_func):

195 for epoch in range(epochs):

196 indices = np.arange(X.shape [0])

197 np.random.shuffle(indices)

198

199 for start_idx in range(0, X.shape [0] - batch_size + 1, batch_size):

200 batch_indices = indices[start_idx:start_idx + batch_size]

201 X_batch = X[batch_indices]

202 y_batch = y[batch_indices]

203

204 # Forward pass

205 y_pred = self.forward(X_batch)

206

207 # Backward pass

208 gradients_W = self.backward(y_batch , y_pred , loss_func)

209

210 # Update moments and weights using Adam optimizer

211 self.update_A(gradients_W)

212 self.update_F(gradients_W)

213 self.adam_update(learning_rate)

214 self.t += 1

215

216 # Optionally , print loss and other metrics for monitoring

217 y_pred_full = self.forward(X)

218 #loss = self. _calculate_loss (y, y_pred_full , loss_func)

219 #print(f"Epoch {epoch + 1}/{ epochs}, Loss: {loss }")

220

221 # Train the network using stochastic gradient descent

222 def trainsgd(self , X, y, learning_rate , epochs , batch_size , use_adam , loss_func=’mse’):

223 print(f"Using adam optimizer for SGD ..." if use_adam else "")

224 print(f"Using Nesterov momentum for SGD ..." if self.use_nesterov else "")

225

226 for epoch in range(epochs):

227 self.sgd(X, y, batch_size , learning_rate , loss_func)

228

229 # Calculate and print loss for monitoring

230 y_pred = self.forward(X)

231 loss = self._calculate_loss(y, y_pred , loss_func)

232 print(f"Epoch {epoch + 1}/{ epochs}, Loss: {loss}")

233

234 def _calculate_loss(self , y, y_pred , loss_func):

235 if loss_func == ’mse’:

236 return np.mean(( y_pred - y) ** 2)

237 elif loss_func == ’nll’:

238 # Clip predictions to prevent log (0)

239 y_pred = np.clip(y_pred , 1e-10, 1.0)

240 return -np.mean(np.sum(y * np.log(y_pred), axis =1))

241 else:

242 raise ValueError("Unsupported loss function")

243

244 def hessian_matrix(self , X, y):

245 y_pred = self.forward(X)

246

247 # Flatten weights across all layers

248 num_total_weights = sum(layer.weights.size for layer in self.layers)

249 full_hessian = np.zeros(( num_total_weights , num_total_weights))

250

251 # Track the starting index for each layer

252 start_idx = 0

253

254 for layer_idx , layer in enumerate(self.layers):
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255 layer_size = layer.weights.size

256

257 # calculate the Hessian entry for each pair of weights in the layer

258 for i in range(layer_size):

259 for j in range(layer_size):

260 hessian_entry = layer.hessian_entry(i, j, y_pred , y)

261 full_hessian[start_idx + i, start_idx + j] = hessian_entry

262

263 start_idx += layer_size

264

265 return full_hessian

266

267 def newton_update(self , X, y, learning_rate =0.01 , loss_func=’mse’, reg_lambda =1e-4):

268 y_pred = self.forward(X)

269 gradients = self.backward(y, y_pred , loss_func)

270 gradient_vector = np.concatenate ([grad.flatten () for grad in gradients ])

271

272 # calculate hessian matrix

273 full_hessian = self.hessian_matrix(X, y)

274 # Regularize

275 full_hessian += reg_lambda * np.eye(full_hessian.shape [0])

276

277 # pseudoinverse of the Hessian

278 hessian_pinv = np.linalg.pinv(full_hessian)

279

280 # Newton update

281 update_step = -learning_rate * np.dot(hessian_pinv , gradient_vector)

282

283 # update weights

284 start_idx = 0

285 for layer in self.layers:

286 layer_size = layer.weights.size

287 layer_update = update_step[start_idx:start_idx + layer_size ]. reshape(layer.weights.shape)

288 layer.weights += layer_update

289 start_idx += layer_size

Listing 1: fnn.py

1 import random

2

3 import numpy as np

4 from scipy.special import logsumexp

5

6

7 class Layer:

8 """

9 A layer in the Feedforward Neural Network (FNN).

10 """

11

12 # Randomly initialize weights and biases

13 def __init__(self , n_input , n_output , init_type , activation):

14 random.seed (2400)

15 if init_type == ’xavier ’:

16 self.weights = self._xavier_init(n_input , n_output)

17 else:

18 self.weights = np.random.uniform(-1, 1, (n_input+1, n_output))*.5

19 self.activation_function = activation

20 self.n_input = n_input

21 #self. gradient_W = None

22

23 def _xavier_init(self , n_input , n_output):

24 """

25 Helper method for Xavier initialization with uniform distribution .

26 """
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27 limit = np.sqrt (0.5 / (n_input + n_output))

28 return np.random.uniform(-limit , limit , (n_input+1, n_output))

29

30 def forward(self , X):

31 X = np.hstack ([X, np.ones((X.shape[0], 1))])

32

33 self.z = np.dot(X, self.weights)

34 self.a = self.activate(self.z)

35 #print(

36 # f"Layer forward pass - Activation {self. activation_function } mean: {np.mean(self.a)}, "

37 # f"std: {np.std(self.a)}, min: {np.min(self.a)}, max: {np.max(self.a)}")

38 self.input_data = X

39

40 return self.a

41

42 def logsoftmax(self , z):

43 return z - np.log(np.sum(np.exp(z - np.max(z, axis=1, keepdims=True)), axis=1, keepdims=True)

+ 1e-8)

44

45 # Activation functions

46 def activate(self , z):

47 activations = {

48 ’relu’: lambda z: np.maximum(0, z),

49 ’sigmoid ’: lambda z: 1 / (1 + np.exp(-np.clip(z, -100, 100))),

50 ’id’: lambda z: z,

51 ’sign’: lambda z: np.sign(z),

52 ’tanh’: lambda z: np.tanh(z),

53 ’hard tanh’: lambda z: np.clip(z, -1, 1),

54 ’logsoftmax ’: lambda z: self.logsoftmax(z),

55 ’leaky_tanh ’: lambda z: np.where(z > 0, np.tanh(z), 0.01 * z),

56 ’softplus ’: lambda z: np.where(z > 20, z, np.log1p(np.exp(z)))

57 }

58

59 return activations[self.activation_function ](z)

60

61 # Derivatives of activation functions

62 """

63 If an error arises using the ’sign ’ activation function , it is because the derivative is

undefined at z = 0. (Will return NaN)

64 """

65 def activation_deriv(self , z):

66 derivs = {

67 ’relu’: lambda z: np.where(z > 0, 1, 0),

68 ’sigmoid ’: lambda z: (sig := 1 / (1 + np.exp(-np.clip(z, -100, 100)))) * (1 - sig),

69 ’id’: lambda _: np.ones_like(z),

70 ’sign’: lambda z: np.zeros_like(z), # Derivative undefined at z = 0

71 ’tanh’: lambda z: 1 - np.tanh(z) ** 2,

72 ’hard tanh’: lambda z: np.where(np.abs(z) <= 1, 1, 0),

73 ’logsoftmax ’: lambda z: self._logsoftmax_derivative(z),

74 ’leaky_tanh ’: lambda z: np.where(z > 0, 1 - np.tanh(z) ** 2, 0.01) ,

75 ’softplus ’: lambda z: 1 / (1 + np.exp(-z))

76 }

77

78 return derivs[self.activation_function ](z)

79

80 def _logsoftmax_derivative(self , z):

81 # Reshape z to ensure it is at least 2D for consistent axis handling

82 if z.ndim == 0:

83 z = z.reshape(1, 1)

84 elif z.ndim == 1:

85 z = z.reshape(1, -1)

86

87 # Compute log -softmax and its derivative

88 softmax = np.exp(z - np.max(z, axis=1, keepdims=True)) / np.sum(np.exp(z - np.max(z, axis=1,

keepdims=True)),
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89 axis=1, keepdims=True)

90 return softmax * (1 - softmax) + 1e-5

91

92 def backward(self , dL_dout):

93 dL_dout = np.nan_to_num(dL_dout)

94 activation_deriv = self.activation_deriv(self.z)

95 dL_dout *= activation_deriv

96 #print(f"Backward dL_dout: mean {np.mean(dL_dout)}, min {np.min(dL_dout)}, max {np.max(

dL_dout)}")

97 # partial derivative of the loss w.r.t. the weights

98 grad_W = np.dot(self.input_data.T, dL_dout)

99

100 #print(

101 # f"Layer forward pass - Activation {self. activation_function } mean: {np.mean(self.a)}, "

102 # f"std: {np.std(self.a)}, min: {np.min(self.a)}, max: {np.max(self.a)}")

103 # accumulation of partial derivative of the loss for each layer

104 dL_din = np.dot(dL_dout , self.weights.T)

105

106 # Remove the bias

107 dL_din = dL_din[:, :-1]

108

109 grad_W = np.clip(grad_W , -3, 3)

110 #self. gradient_W = grad_W

111

112 return grad_W , dL_din

113

114 def activation_second_deriv(self , z):

115 """

116 Compute the second derivative of the activation function.

117 """

118 second_derivs = {

119 ’relu’: lambda z: np.zeros_like(z),

120 ’sigmoid ’: lambda z: (sig := 1 / (1 + np.exp(-np.clip(z, -100, 100)))) * (1 - sig) * (1 -

2 * sig),

121 ’id’: lambda _: np.zeros_like(z),

122 ’tanh’: lambda z: -2 * np.tanh(z) * (1 - np.tanh(z) ** 2),

123 ’leaky_tanh ’: lambda z: np.where(z > 0, -2 * np.tanh(z) * (1 - np.tanh(z) ** 2), 0),

124 ’softplus ’: lambda z: np.exp(-z) / ((1 + np.exp(-z)) ** 2)

125 }

126 return second_derivs.get(self.activation_function , lambda z: np.zeros_like(z))(z)

127

128 def hessian_diagonal(self , dL_dout):

129 dL_dout = np.nan_to_num(dL_dout)

130 # Compute the first and second derivatives of the activation function

131 activation_deriv = self.activation_deriv(self.z)

132 second_activation_deriv = self.activation_second_deriv(self.z)

133

134 # Calculate the diagonal of the Hessian with respect to weights in this layer

135 # hessian_diag = np.sum (( self. input_data ** 2) * (dL_dout * second_activation_deriv ), axis =0)

136 hessian_diag = np.sum((self.input_data ** 2).T @ (dL_dout * second_activation_deriv), axis =0)

137

138 # Calculate dL_din for second -order backpropagation

139 dL_din = np.dot(dL_dout * activation_deriv , self.weights.T)

140 second_order_term = np.dot(dL_dout * second_activation_deriv , self.weights.T)

141 dL_din += second_order_term

142

143 dL_din = dL_din[:, :-1]

144

145 return hessian_diag , dL_din

146

147

148 def hessian_entry(self , i, j, y_pred , y):

149 # inputs for weights w_i and w_j

150 input_i = self.input_data.flatten ()[i]

151 input_j = self.input_data.flatten ()[j]
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152

153 # Calculate z

154 local_z = input_i * self.weights.flatten ()[i] + input_j * self.weights.flatten ()[j]

155

156 activation_deriv = self.activation_deriv(local_z)

157 activation_second_deriv = self.activation_second_deriv(local_z)

158

159 term1 = activation_second_deriv * input_i * input_j * (y_pred - y)

160 term2 = activation_deriv ** 2 * input_i * input_j

161 # Hessian for (i,j)

162 return np.sum(term1 + term2)

Listing 2: layer.py

1 import numpy as np

2 import torch

3 import random

4 from torch.utils.data import DataLoader , Subset

5 from torchvision import transforms

6 from torchvision.datasets import MNIST

7 import matplotlib.pyplot as plt

8 from layer import Layer

9 from fnn import FNN

10 from sklearn.model_selection import train_test_split

11 import time

12

13 # Set random seed for reproducibility

14 random_seed = 24

15 np.random.seed(random_seed)

16 torch.manual_seed(random_seed)

17 random.seed(random_seed)

18

19 def get_data_loader(is_train , subset_size =1000 , downsample_size =14):

20 # Transform : Resize and convert to tensor

21 to_tensor = transforms.Compose ([

22 transforms.Resize (( downsample_size , downsample_size)), # Resize to smaller image

23 transforms.ToTensor ()

24 ])

25 data_set = MNIST("", is_train , transform=to_tensor , download=True)

26

27 # Reduce to a subset if specified

28 if subset_size and is_train:

29 indices = list(range(len(data_set)))

30 subset_indices , _ = train_test_split(indices , train_size=subset_size , stratify =[ data_set[i

][1] for i in indices], random_state=random_seed)

31 data_set = Subset(data_set , subset_indices)

32

33 return DataLoader(data_set , batch_size=subset_size , shuffle=True)

34

35 def evaluate(test_data , net):

36 n_correct = 0

37 n_total = 0

38 for batch_X , batch_y in test_data:

39 batch_X = batch_X.view(batch_X.shape[0], -1).numpy ()

40 batch_y = batch_y.numpy ()

41

42 outputs = net.forward(batch_X)

43 predicted = np.argmax(outputs , axis =1)

44 n_correct += (predicted == batch_y).sum()

45 n_total += batch_y.shape [0]

46

47 return n_correct / n_total

48

49 # Create network with case4 ’s Layer and FNN
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50 input_size = 14 * 14 # Reduced dimensionality due to downsampling

51 hidden_size = 10

52 output_size = 10

53

54 # Define layers

55 layer1 = Layer(input_size , hidden_size , init_type= ’uniform ’, activation=’relu’)

56 layer2 = Layer(hidden_size , hidden_size , init_type= ’uniform ’, activation=’relu’)

57 layer3 = Layer(hidden_size , hidden_size , init_type= ’uniform ’, activation=’relu’)

58 layer4 = Layer(hidden_size , output_size , init_type= ’uniform ’, activation=’logsoftmax ’)

59

60 # Initialize FNN with the modified architecture

61 net = FNN(layers =[layer1 , layer2 , layer3 ])

62

63 # Get data loaders

64 train_data = get_data_loader(is_train=True , subset_size =1000, downsample_size =14) # Smaller input

and subset

65 test_data = get_data_loader(is_train=False , downsample_size =14)

66

67 # Prepare training dataset as a single array

68 X_train = []

69 y_train = []

70 for batch_X , batch_y in train_data:

71 X_train.append(batch_X.view(batch_X.shape [0], -1).numpy())

72 y_train.append(batch_y.numpy())

73

74 X_train = np.concatenate(X_train)

75 y_train = np.concatenate(y_train)

76

77 # Convert labels to one -hot encoding

78 y_train_one_hot = np.zeros (( y_train.size , output_size))

79 y_train_one_hot[np.arange(y_train.size), y_train] = 1

80

81 # Initial accuracy

82 initial_accuracy = evaluate(test_data , net)

83 print("Initial accuracy:", initial_accuracy)

84

85 # Training parameters

86 learning_rate = 0.001

87 epochs = 100

88 reg_lambda = 1e-2

89

90 # Start the timer

91 start_time = time.time()

92

93 # Train using Newton ’s update from case4

94 loss_func = ’nll’

95 use_adam = True

96 batch_size = 25

97 method = "diagonal_approx"

98 for epoch in range(epochs):

99

100 if method == "diagonal_approx":

101 net.newton_update_diagonal_approx(X_train ,

102 y_train_one_hot ,

103 learning_rate=learning_rate ,

104 loss_func=loss_func)

105 elif method == "newton_update":

106 net.newton_update(X_train ,

107 y_train_one_hot ,

108 learning_rate=learning_rate ,

109 loss_func=loss_func ,

110 reg_lambda=reg_lambda)

111

112 # Evaluate accuracy after each epoch

113 accuracy = evaluate(test_data , net)
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114 print(f"Epoch {epoch + 1}/{ epochs}, Accuracy: {accuracy :.4f}")

115

116 # End the timer

117 end_time = time.time()

118 training_duration = end_time - start_time

119 print(f"Total training time: {training_duration :.2f} seconds")

120

121 # Visualize some predictions

122 for n, (x, _) in enumerate(test_data):

123 if n > 5:

124 break

125

126 x_flat = x[0]. view(-1).numpy()

127 pred = np.argmax(net.forward(x_flat.reshape(1, -1)))

128

129 plt.figure(n)

130 plt.imshow(x[0]. view(14, 14), cmap=’gray’)

131 plt.title(f"Prediction: {pred}")

132

133 plt.show()

Listing 3: case3hessian.py

1 import numpy as np

2 import time

3 from sklearn.datasets import load_iris

4 from sklearn.metrics import accuracy_score

5 from sklearn.model_selection import train_test_split

6 from sklearn.preprocessing import StandardScaler

7

8 from fnn import FNN

9 from layer import Layer

10

11 # Set random seed for reproducibility

12 random_seed = 24

13 np.random.seed(random_seed)

14

15 # Load the Iris dataset

16 data = load_iris ()

17 X = data.data

18 y = data.target

19

20 # One -hot encode the target labels

21 num_classes = len(np.unique(y))

22 y_onehot = np.zeros((y.shape[0], num_classes))

23 for i, label in enumerate(y):

24 y_onehot[i, label] = 1

25

26 # Verify the one -hot encoding

27 print("Original labels:", y[:5])

28 print("One -hot encoded labels :\n", y_onehot [:5])

29

30 # Split data into training and test sets

31 X_train , X_test , y_train , y_test = train_test_split(X, y_onehot , test_size =0.1, random_state=

random_seed)

32

33 # Standardize the data

34 scaler = StandardScaler ()

35 X_train = scaler.fit_transform(X_train)

36 X_test = scaler.transform(X_test)

37

38 # Network configuration

39 hidden_layer = 10

40 layers = [

University of New Mexico 35 CS 4/591, Fall 2024



10 APPENDIX

41 Layer(n_input=4, n_output=hidden_layer , init_type=’xavier ’, activation=’tanh’),

42 Layer(n_input=hidden_layer , n_output=hidden_layer , init_type=’xavier ’, activation=’tanh’),

43 Layer(n_input=hidden_layer , n_output=3, init_type=’xavier ’, activation=’logsoftmax ’)

44 ]

45 nn = FNN(layers)

46

47 # Training parameters

48 epochs = 25

49 learning_rate = 0.001

50 reg_lambda = 1e-4

51 method = "diagonal_approx"

52

53 # Start the timer

54 start_time = time.time()

55

56 # Train using Newton ’s method

57 for epoch in range(epochs):

58 print(f"\nEpoch {epoch + 1}/{ epochs}")

59

60 if method == "diagonal_approx":

61 nn.newton_update_diagonal_approx(X_train ,

62 y_train ,

63 learning_rate=learning_rate ,

64 loss_func="nll")

65 elif method == "newton_update":

66 nn.newton_update(X_train ,

67 y_train ,

68 learning_rate=learning_rate ,

69 loss_func="nll",

70 reg_lambda=reg_lambda)

71

72 # Forward pass to get predictions on training set

73 y_train_pred = nn.forward(X_train)

74 train_loss = nn._calculate_loss(y_train , y_train_pred , loss_func=’nll’)

75 train_accuracy = accuracy_score(y_train.argmax(axis =1), y_train_pred.argmax(axis =1))

76

77 # Print training statistics

78 print(f"Epoch {epoch + 1}/{ epochs}")

79 print(

80 f"y_train_pred mean: {np.mean(y_train_pred)}, std: {np.std(y_train_pred)}, min: {np.min(

y_train_pred)}, max: {np.max(y_train_pred)}")

81 print(f"train_loss: {train_loss}, train_accuracy: {train_accuracy}")

82

83 # Gradient inspection

84 gradients_W = nn.backward(y_train , y_train_pred , loss_func=’nll’)

85 for i, grad_W in enumerate(gradients_W):

86 print(

87 f"Layer {i + 1} Gradient Mean: {np.mean(grad_W)}, Std: {np.std(grad_W)}, Range: {np.min(

grad_W)} to {np.max(grad_W)}")

88

89 # End the timer

90 end_time = time.time()

91 training_duration = end_time - start_time

92 print(f"Total training time: {training_duration :.2f} seconds")

93

94 # Test the network

95 y_test_pred = nn.forward(X_test)

96 test_loss = nn._calculate_loss(y_test , y_test_pred , loss_func=’nll’)

97 test_accuracy = accuracy_score(y_test.argmax(axis =1), y_test_pred.argmax(axis =1))

98

99 print(f"Test Loss: {test_loss}, Test Accuracy: {test_accuracy * 100:.2f}%")

Listing 4: case4.py
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