
CS 4/591: Neural Network

Assignment 2: Basic Models for Classification

Jyrus Cadman Robert McCourt Bethany Peña Gabriel Urbaitis

7 October 2024

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Classification Methods 3

2.1 Widrow-Hoff Learning . 3

2.1.1 Implementation details) . 3

2.2 Linear Support Vector Machine (SVM) . 4

2.2.1 Implementation details . 5

2.3 Logistic Regression . 5

2.3.1 Implementation details . 6

2.4 Weston-Watkins SVM . 6

2.4.1 Implementation details) . 7

3 Data Sets 7

3.1 Binary Classification Data Set . 7

3.2 Multi-Class Classification Data Set . 8

4 Evaluation 8

4.1 Training . 8

4.1.1 Binary Classification with Breast Cancer Dataset . 8

4.1.2 Binary Classification with Wine Dataset . 10

4.1.3 Multiclass Training with the Wine DataSet . 12

4.2 Testing . 12

4.2.1 Binary Classification . 12

4.2.2 Results from Breast Cancer Dataset . 12

4.2.3 Results from Modified Wine Dataset . 12

4.2.4 Multiclass Classification with Wine Dataset . 13

5 Discussion 15

6 Conclusion 15

University of New Mexico 2 CS 4/591, Fall 2024

2 CLASSIFICATION METHODS

1 Introduction

Classification is a key task of neural network models. This report focuses on the implementation and

evaluation of three binary classification models, Widrow-Hoff Learning, Linear Support Vector Machine

(SVM), and Logistic Regression. We also explore expanding beyond the binary classification task into

multi-class classification by implementing and evaluating the Weston-Watkins Support Vector Machine.

In this assignment, we train and test each of our binary classification models on two, toy datasets from

the Python scikit-learn library. We compare the loss convergance and runtime for training the three different

models, and then compare the results from testing on a validation data set. Additionally, the Weston-Watkins

SVM model is evaluated and tested using a multiclass dataset from scikit-learn.

The goal of this work is to deepen our understanding of how these algorithms work through implementing

them in Python code and testing and comparing their performance across different datasets.

2 Classification Methods

2.1 Widrow-Hoff Learning

Widrow-Hoff learning, or Least Mean Squares (LMS) algorithm is a direct application of the least-squares

regression method used for binary classification, i.e, least-squares classification. Widrow-Hoff learning is

used in shallow, supervised learning where parameters are adjusted in an iterative fashion to approximate a

desired target function.

This implementation of Widrow-Hoff learning focuses on a single layer network with n input nodes

and a single output node. Given a set of training data, the least squares regression method aims to solve

the following optimization problem

min

m∑
i=1

(yi − ŷi)
2

When the sample output can only be -1 or 1, the loss function, Li can be defined as

Li = (1− yiŷi)
2

This loss function measures the squared error between the target value (label) yi and the predicted output

value ŷi The gradient update rule is given by

W ←−W + αyi(1− yiŷi)X
T
i

Which can be derived by computing the gradient of Li with respect to W

∂Li

∂W
=

∂

∂W
((1− yiW

T
Xi)

2)

2.1.1 Implementation details)

The Widrow-Hoff learning algorithm is based on a perceptron model implemented in Python. This imple-

mentation (Listing 1) assumes that the bias term is absorbed into the sample matrix, X, and focuses on

adjusting the weights based on the Widrow-Hoff update rule.

University of New Mexico 3 CS 4/591, Fall 2024

2.2 Linear Support Vector Machine (SVM) 2 CLASSIFICATION METHODS

Attributes:

weights: An array containing the weights to be learned by the model. The weights are initialized

randomly before training.

learning rate: The learning rate (learning rate) is a hyperparameter that must be specified by the

user. It controls the step size during weight updates.

errors: A list that tracks the error at each epoch during training.

Methods:

forward: Computes the forward pass of the model. It calculates the dot product of the weights and

the input samples (wTX). The output is clipped to avoid numerical overflow.

loss: Computes the squared error loss between the predicted output and the true label, given by

(1− yiŷi)
2. The result is clipped to avoid overflow.

fit: Trains the model using the training data and corresponding labels. The weights are updated at

each step based on the Widrow-Hoff rule: W ← W + αyi(1 − yiŷi)X
T
i . The method also tracks

and stores the error for each epoch.

predict: Applies the sign activation function on the forward pass results to predict the class labels

({−1, 1}) for the input samples.

2.2 Linear Support Vector Machine (SVM)

A linear support vector machine uses the same neural architecture as the Widrow-Hoff method, but uses

a different loss function. The Widrow-Hoff method calculates the loss using a least-squares method. As a

result, the loss solely depends on whether or not the classification is correct. The SVM improves upon this

using a “hinge loss” function, given below, which penalizes predictions that do not lie within a margin of

confidence.

Li = max(0, 1− yiŷi)

= max(0, 1− yi(w ∗ xi
T))

We can search for the optimal parameters of the using the gradient descent method. The gradient of the

loss for the ith sample with respect to the weights is given by:

δLi

δw
= −yixi

T

We can use the gradient to iteratively update our weight predictions by using the following expression.

The following expression involves the regularization parameter, λ, and prevents overly large weights.

W = W (1− αλ) + α(yix
T
i) ∗ I(yiŷi < 1)

University of New Mexico 4 CS 4/591, Fall 2024

2.3 Logistic Regression 2 CLASSIFICATION METHODS

2.2.1 Implementation details

The linear SVM is implemented in a Python class (Listing 2). This model assumes that the bias is absorbed

into the sample matrix, X, as a row of ones and an additional weight parameter.

Linear SVM

Attributes:

weights: an array containing the weights to be learned by the SVM; they are randomly initialized

before training.

learning rate: the learning rate must be set by the user.

C: the regularization parameter must be set by the user.

Methods:

forward: computes the forward pass of the neural network; this is done by computing wTX.

loss: Computes the hinge loss for a prediction.

update: Updates the weight predictions according the gradient descent algorithm, using the SVM

regularization parameter.

fit: Learn weights using training data and labels.

predict: applies the sign activation function to predict the class labels of the input samples based on

the forward pass.

2.3 Logistic Regression

Logistic Regression is a well-known method for binary classification that uses a logistic function to model the

probability of an instance belonging to a particular class. Unlike Widrow-Hoff Learning and Linear SVM,

which directly predict class labels, logistic regression outputs probabilities between 0 and 1.

The logistic function (also known as the sigmoid function) is defined as:

σ(z) =
1

1 + e−z

where z = wTx+ b, w is the weight vector, x is the input feature vector, and b is the bias term.

The probability of an instance belonging to the positive class (y = 1) is modeled as:

P (y = 1|x) = σ
(
wTx+ b

)
The loss function used in this implementation is the binary cross-entropy loss:

L(w, b) = − 1

m

m∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where m is the number of training examples, yi is the true label, and ŷi is the predicted probability.

The gradients of the loss function with respect to the weights and bias are used in the optimization process

to update these parameters.

University of New Mexico 5 CS 4/591, Fall 2024

2.4 Weston-Watkins SVM 2 CLASSIFICATION METHODS

2.3.1 Implementation details

The Logistic Regression algorithm is implemented in a Python class named LogisticRegression (Listing 5).

This implementation separates the bias term from the weight vector for clarity.

LogisticRegression

Attributes:

weights: A NumPy array containing the weights to be learned by the model. The weights are initial-

ized as zeroes before training.

bias: A scalar value representing the bias term, initialized as 0 before training.

learning rate: A hyperparameter specified by the user that controls the step size during weight

updates.

num iterations: The number of iterations for the optimization process.

Methods:

sigmoid(z): Computes the sigmoid function given input z.

forward(x): Computes the forward pass of the model. It calculates the sigmoid of the dot product of

the weights and the input samples plus the bias (σ
(
wTX+ b

)
).

loss(y pred, y: Computes the binary cross-entropy loss between the predicted probabilities and the

true labels. Note that the implementation adjusts the true labels from {−1, 1} to {0, 1} for the

loss calculation.

fit(X, y): Trains the model using the training data and corresponding labels. The weights and bias

are updated at each iteration using gradient descent. The method also tracks and stores the loss

for each iteration, returning the loss history.

predict(X): Applies a threshold of 0.5 on the predicted probabilities to determine the class labels (-1

or 1) for the input samples.

2.4 Weston-Watkins SVM

The Weston Watkins SVM is one of the neural architectures for multiclass models. Much the same way

as the Multiclass Perceptron, there is a different update rule for the weights of incorrect classes than the

weights of correct classes. Correct class weights are increased to improve their outputs and incorrect class

weights are decreased.

The loss function is calculated as:

Li =
∑

r:r ̸=c(i)

max
(
W̄r · X̄iT − W̄ c(i) · X̄T

i + 1, 0
)

This is designed to make the class index r with the largest value for Wr ·XT
i the correct class prediction

and to penalize deviation from this ideal condition.

The gradient is calculated as:

University of New Mexico 6 CS 4/591, Fall 2024

3 DATA SETS

∂Li

∂Wr
=

−X̄iT
[∑

j ̸=r δ(j, X̄i)
]

if r = c(i)

X̄T
i

[
δ(r, X̄i)

]
if r ̸= c(i)

where δ(j, X̄i) is an indicator function which is 1 when the j-th class separator has a positive contribution

to the loss function for sample X̄i.

δ(j, X̄i) =

1 if Wj · X̄T
i −Wc(i) · X̄T

i + 1 > 0,

0 otherwise.

As the gradient tells us the direction of steepest ascent, to perform gradient descent, we move in the

opposite direction of the gradient to minimize the loss function. This means we flip the sign to achieve the

following stochastic gradient-descent step:

W̄r ← W̄r + α

X̄iT
[∑

j ̸= rδ(j, X̄i)
]

if r = c(i)

−X̄T
i

[
δ(r, X̄i)

]
if r ̸= c(i)

2.4.1 Implementation details)

The Weston Watkins SVM is implemented in a Python class.

weston watkins

Attributes:

W: an array containing the weights to be learned by the SVM; they are randomly initialized before

training.

lr: the learning rate must be set by the user.

epochs: the number of epochs must be set by the user.

Methods:

loss function: Computes the Weston Watkins loss for a sample. (Used purely for tracking)

gradient: Computes how the weights need to be adjusted for a given sample. This is done by com-

puting ∂Li

∂Wr
.

fit: Learn weights using training data and labels.

predict: Predicts the class labels of the input samples based on the forward pass.

3 Data Sets

3.1 Binary Classification Data Set

In this experiment, we utilized two well-known toy datasets from the scikit-learn library: the wine and breast

cancer datasets. Both datasets are commonly used for classification experiments due to their manageable

University of New Mexico 7 CS 4/591, Fall 2024

3.2 Multi-Class Classification Data Set 4 EVALUATION

size and variety of features.

• Breast Cancer Dataset: This dataset contains 569 samples with 30 features that describe char-

acteristics of cell nuclei from breast cancer biopsies. It is a binary classification problem, where the

goal is to predict whether a tumor is malignant or benign. The data is already structured for binary

classification

• Wine Dataset: The wine dataset consists of 178 samples, each with 13 numerical features derived

from chemical analysis of wines grown in the same region of Italy. The dataset originally contains three

classes, corresponding to three types of wine. Since our models were designed for binary classification,

we filtered out of class of wine and used only two for training and testing purposes

3.2 Multi-Class Classification Data Set

In this experiment, we utilized the wine dataset from sci-kit learn. The wine dataset is a toy dataset

commonly used for classification experiments due to its manageable size and variety of features.

• Wine Dataset: The wine dataset consists of 178 samples, each with 13 numerical features derived

from chemical analysis of wines grown in the same region of Italy. The dataset contains three classes,

corresponding to three types of wine. We used all 3 classes for the multi-class classification portion of

our research.

4 Evaluation

In this experiment, we divided each dataset into training and testing subsets to evaluate the performance

of our classification models. 75% of the data was reserved for training, allowing the models to learn the

underlying patterns, while the remaining 25% was allocated for testing to assess the generalization ability

of the models. The training set was used to optimize the model parameters, and the testing set provided

an unbiased evaluation of the model’s performance. This split ensured that we could measure the accuracy,

execution time, and accumulated loss on data that the model had not seen during training.

4.1 Training

4.1.1 Binary Classification with Breast Cancer Dataset

We used scikit-learn’s train test split method to split the breast cancer dataset into training and testing

samples. We used the default splitting proportion which uses 25% of the data for testing, and 75% of the

data for training.

For all of our models the bias is absorbed into the sample matrix, X, as a row of ones and an additional

weight parameter. The initial weights in our models are uniformly chosen between values -1 and 1. We use

the same initial weights for each model so we can directly compare the results.

We also transform the data using scikit-learn’s StandardScaler tool. This tool transforms the data so

that it has its mean at 0 and a variance of 1. Since our binary classifications methods are optimized using

gradient descent, this greatly improved the ability of our algorithms to converge to a final solution.

We trained the binary classification models using the learning rates 0.01 and 0.001 and trained for 500

epochs. For both learning rates (see plot a. in figures 1 and 2), the loss converged within 500 epochs. We

University of New Mexico 8 CS 4/591, Fall 2024

4.1 Training 4 EVALUATION

(a) Loss Comparison (b) Time to fit model (run 500 epochs)

Figure 1: Comparison between Widrow-Hoff, Linear SVM, and Logistic Regression classification methods
using a 0.01 learning rate on the breast cancer dataset using a semilog plot.

noticed some slight variation in the loss convergence depending on how the weights were randomized, which

is to be expected.

For both learning rates, the Widrow-Hoff model appeared to converge fastest. The log regression and

SVM model appeared to converge at similar rates. The SVM converged to a lower loss than the other two

models. Modifying the learning rate to 0.001 resulted in a slightly slower convergence for all models. This

is expected since the learning rate determines how much the weights are updated each iteration.

Additionally we measured the time for each algorithm to train. Plot (b.) in figures 1 and 2 compares the

run times. The Widrow-Hoff model took the longest to run of the three models.

(a) Loss Comparison (b) Time to fit model (run 500 epochs)

Figure 2: Comparison between Widrow-Hoff, Linear SVM, and Logistic Regression classification methods
using a 0.001 learning rate on the breast cancer dataset on a semilog plot.

University of New Mexico 9 CS 4/591, Fall 2024

4.1 Training 4 EVALUATION

4.1.2 Binary Classification with Wine Dataset

The wine dataset was originally meant for multi-class classification. In order to adapt it to our binary

methods, we filtered out the data and labels from the third class of wine and used only the first two classes

in our training and testing.

We used scikit-learn’s train test split method to split the dataset into training and testing samples.

We used the default splitting proportion which uses 25% of the data for testing, and 75% of the data for

training.

(a) Loss Comparison (b) Time to fit model (run 500 epochs)

Figure 3: Comparison between Widrow-Hoff, Linear SVM, and Logistic Regression classification methods
using a 0.01 learning rate on the wine dataset on a semilog plot.

For all of our models the bias is absorbed into the sample matrix, X, as a row of ones and an additional

weight parameter. We also transform the data using scikit-learn’s StandardScaler tool. This tool transforms

the data so that it has its mean at 0 and a variance of 1. Since our binary classifications methods are optimized

using gradient descent, this greatly improved the ability of our algorithms to converge to a final solution.

There was some slight variation in the loss convergence from the randomized weights, but this is to be

expected.

We trained the binary classification models using the learning rates 0.01 and 0.001 and trained for 500

epochs. For this dataset, with a learning rate of 0.01, the SVM converged to a signficiantly lower learning

rate than the other two models. The log regression model converged at a much more gradual pace compared

to the Widrow-Hoff model. Modifying the learning rate to 0.001 resulted in a much more gradual convergence

for all models. This is expected since the learning rate determines how much the weights are updated each

iteration.

University of New Mexico 10 CS 4/591, Fall 2024

4.1 Training 4 EVALUATION

(a) Loss Comparison (b) Time to fit model (run 500 epochs)

Figure 4: Comparison between Widrow-Hoff, Linear SVM, and Logistic Regression classification methods
using a 0.001 learning rate on the wine dataset on a semilog plot.

University of New Mexico 11 CS 4/591, Fall 2024

4.2 Testing 4 EVALUATION

4.1.3 Multiclass Training with the Wine DataSet

We used scikit-learn’s train test split method to split the wine dataset into training and testing samples.

We used half the samples for training and half for testing, and a random seed of 25 to select which samples

went in each category for repeatability. The initial weights in our models are uniformly chosen between

values -1 and 1, also with a random seed of 25. We use the same initial weights for each model so we can

directly compare the results. We also transform the data using scikit-learn’s StandardScaler tool. This tool

transforms the data so that it has its mean at 0 and a variance of 1. Since the Weston Watkins method is

optimized using stochastic gradient descent, this greatly improved the ability of our algorithm to converge

to a final solution.

4.2 Testing

4.2.1 Binary Classification

To test the binary classification models we used the remaining 25% of the data that was not used in training.

4.2.2 Results from Breast Cancer Dataset

The proportion of accurate classifications for models trained using the 0.01 and 0.001 leanings rates is shown

in figure 5. All models achieved high levels of accuracy for both learning rates. However, we achieved slightly

higher average accuracy in using the 0.01 for the learning rate. This is due to less variation between the

models.

However, as mentioned in training section, the slight variation could be a result of the random initialization

of the weights rather than a reflection on the models.

(a) 0.01 Learning Rate (b) 0.001 Learning Rate

Figure 5: Comparison between Widrow-Hoff, Linear SVM, and Logistic Regression classification methods
using different learning rates on the wine dataset.

4.2.3 Results from Modified Wine Dataset

The proportion of accurate classifications for models trained using the 0.01 and 0.001 leanings rates is shown

in figure 5. All models achieved high levels of accuracy for both learning rates. The model trained with the

University of New Mexico 12 CS 4/591, Fall 2024

4.2 Testing 4 EVALUATION

learning rate of 0.01 achieved 97% accuracy. The model trained the learning rate of 0.001 had high levels of

accuracy, but the logistic regression model had a slightly lower (94%) accuracy than the other two models

(97%).

However, as mentioned in training section, the slight variation could be a result of the random initialization

of the weights rather than a reflection on the models.

(a) 0.01 Learning Rate (b) 0.001 Learning Rate

Figure 6: Comparison between Widrow-Hoff, Linear SVM, and Logistic Regression classification methods
using different learning rates on the wine dataset.

4.2.4 Multiclass Classification with Wine Dataset

As seen in the confusion matrix for the 3 class Wine DataSet, Class 0 and 1 were totally predicted correctly,

and Class 2 had 4 misclassifications, 3 as Class 1 and 1 as Class 0. The confusion matrix was identical for

both the .001 and .01 learning rates. This doesn’t mean that the same samples were misclassified, though

it is likely that they were the same in both cases. The accuracy was thus also the same for both, though

the learning rate of .01 converged in 19 epochs, compared to 194 for .001. This makes sense as the smaller

learning rate would only be able to adjust the weights by about 1/10th smaller increments each time, so it

would take it 10 times as long to find the minimum.

University of New Mexico 13 CS 4/591, Fall 2024

4.2 Testing 4 EVALUATION

(a) Accuracy (b) Time to fit model (run 500 epochs)

Figure 7: Comparison between accuracy and time to converge using different learning rates on the 3 class
wine dataset.

Figure 8: Confusion Matrix for both learning rates (they were identical)

University of New Mexico 14 CS 4/591, Fall 2024

6 CONCLUSION

5 Discussion

The objective of this experiment was to evaluate the performance of different classification models, Widrow-

Hoff, Linear Support Vector Machine, Linear Regression, and Weston-Watkins Support Vector Machine. The

experiment was conducted by implementing each classification algorithm as a Python class, and evaluated

their effectiveness of each method across different hyper parameters to measure their accuracy, execution

time, and accumulated loss. We tested our implementations on different datasets from the scikit-learn library,

specifically the wine dataset was used for multi-class classification, and a modified version of the wine dataset

and breast cancer datasets were used for binary classification.

Our results align with what we expected, as the Linear SVM is the more advanced binary classification al-

gorithm out of the three and as a result had the highest average accuracy, as well as the second best execution

time. However, the execution time of the Widrow-Hoff model stood out as an outlier, taking nearly 10 times

longer to complete compared to Linear SVM, and about 20 times longer than Linear Regression. Despite

Widrow-Hoff’s reasonably good accuracy, its significantly longer training time highlights its inefficiency in

comparison to the other methods.

We had an effective implementation of the Weston Watkins SVM method for multiclass classification, as

it classified two of the 3 classes perfectly and only misclassified 4 samples in the third class. We only had

one hyperparameter for comparison amongst runs of the code, learning rate. There was no difference in

accuracy, provided we ran for enough epochs, but the smaller .001 learning rate converged in 194 epochs

compared to the 19 epochs for the .01 learning rate.

6 Conclusion

Our analysis demonstrates that the Linear SVM model consistently outperforms the Widrow-Hoff algorithm

in terms of both accuracy and execution time. While Widrow-Hoff achieves reasonably good accuracy, its

training times are significantly loner compared to Linear SVM. Linear Regression on the other hand, delivers

solid accuracy cand exhibits the fastest execution times of all three mdoels, making it a competitive option

in terms of performance and efficieny. Overall, Linear SVM offers the best balance of speed and accuracy

for these datasets, though Linear Regression is a strong candidate for cases where computational efficiency

is a priority.

We were also able to demonstrate the effectiveness of the Weston Watkins SVM, achieving 95 percent

accuracy for both .01 and .001 learning rates. An analysis of testing accuracy revealed 4 samples were

misclassified for Class 2, 3 as Class 1 and 1 as Class 0, for both learning rates. As expected a 10 times

smaller learning rate took roughly 10 times as many epochs to converge to 0 loss.

University of New Mexico 15 CS 4/591, Fall 2024

6 CONCLUSION

Appendix

1 import numpy as np

2

3 class WidrowHoff:

4 def __init__(self , num_inputs , learning_rate =0.01):

5 self.learning_rate = learning_rate

6 self.weights = np.random.uniform(-1, 1, num_inputs)

7 self.errors = []

8

9 def forward(self , X):

10 return np.clip(X @ self.weights , -1e10 , 1e10) # Clipping to prevent overflow

11

12 def loss(self , y_pred , y):

13 return np.clip ((1 - y_pred * y) ** 2, -1e10 , 1e10) # Clipping to prevent overflow

14

15 def fit(self , X_train , y_train , max_epochs):

16 for epoch in range(max_epochs):

17 total_error = 0

18

19 for X, y in zip(X_train , y_train):

20 y_pred = self.forward(X)

21

22 # calculate the error

23 error = self.loss(np.array ([y_pred]), np.array([y]))

24 total_error += error

25

26 self.weights += self.learning_rate * y * (1 - y * y_pred) * X

27

28 if np.all(error == 0):

29 print(f"Converged at epoch {epoch}")

30 break

31

32 avg_error = total_error / len(y_train)

33 self.errors.append(avg_error)

34 #print(f"Epoch {epoch} - Total Error: { total_error }")

35

36 return np.array(self.errors)

37

38

39 def predict(self , X):

40 return np.where(self.forward(X) >= 0, 1, -1)

Listing 1: widrowhoff.py

1 import numpy as np

2 import numpy.typing as npt

3

4 """

5 TODO:

6 Do we need to use regularization in hinge loss function?

7 """

8

9 class Linear_SVM:

10

11 def __init__(self , weights: np.ndarray , learning_rate: float , C: float) -> None:

12 self.weights = weights

13 self.learning_rate = learning_rate

14 self.C = C

15

16 def forward(self , X: np.ndarray) -> np.ndarray:

17 """ Compute raw scores for input data X."""

18 return X @ self.weights

19

University of New Mexico 16 CS 4/591, Fall 2024

6 CONCLUSION

20 def loss(self , y: np.ndarray , yhat: np.ndarray) -> np.ndarray:

21 """ Hinge loss calculation ."""

22 return np.maximum(0, 1 - y * yhat)

23

24 def update(self , yhat: np.ndarray , y: np.ndarray , X: np.ndarray) -> None:

25 """ Update weights using gradient descent."""

26 for i in range(len(y)):

27 if y[i] * yhat[i] < 1:

28 regularization_term = self.weights *(1 - self.learning_rate*self.C)

29 self.weights = regularization_term + self.learning_rate * (y[i] * X[i, :])

30

31 def fit(self , X: np.ndarray , y: np.ndarray , max_epochs) -> np.ndarray:

32 """ Fit the model to the data."""

33 loss_per_epoch = []

34 for epoch in range(max_epochs):

35 #print(f"Epoch: {epoch }")

36 yhat = self.forward(X)

37 loss = self.loss(y, yhat)

38 self.update(yhat , y, X)

39

40 epoch_loss = np.sum(loss) / len(y)

41 loss_per_epoch.append(epoch_loss)

42

43 if np.all(loss == 0):

44 break

45

46 return np.array(loss_per_epoch)

47

48 def predict(self , X: np.ndarray) -> np.ndarray:

49 """ Predict class labels for samples in X."""

50 return np.where(self.forward(X) >= 0, 1, -1)

Listing 2: linear svm.py

1 import numpy as np

2

3 class LogisticRegression:

4 """

5 Logistic Regression classifier .

6 """

7

8 def __init__(self , learning_rate =0.01 , num_iterations =100):

9 self.learning_rate = learning_rate

10 self.num_iterations = num_iterations

11 self.weights = None

12 self.bias = None

13

14 def sigmoid(self , z):

15 return 1 / (1 + np.exp(-z))

16

17 def forward(self , X):

18 return self.sigmoid(np.dot(X, self.weights) + self.bias)

19

20 def loss(self , y_pred , y):

21 return -np.mean(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

22

23 def fit(self , X, y):

24 num_samples , num_features = X.shape

25 self.weights = np.zeros(num_features)

26 self.bias = 0

27

28 loss_per_epoch = []

29

30 for _ in range(self.num_iterations):

University of New Mexico 17 CS 4/591, Fall 2024

6 CONCLUSION

31 y_pred = self.forward(X)

32

33 # Compute the loss and store it for the current epoch

34 epoch_loss = self.loss(y_pred , (y + 1) / 2)

35 loss_per_epoch.append(epoch_loss)

36

37 # Gradient descent

38 dw = (1 / num_samples) * np.dot(X.T, (y_pred - (y + 1) / 2))

39 db = (1 / num_samples) * np.sum(y_pred - (y + 1) / 2)

40

41 self.weights -= self.learning_rate * dw

42 self.bias -= self.learning_rate * db

43

44 return np.array(loss_per_epoch)

45

46 def predict(self , X):

47 y_pred = self.forward(X)

48 return np.where(y_pred > 0.5, 1, -1)

Listing 3: logistic regression.py

1 from linear_svm import Linear_SVM

2 from logistic_regression import LogisticRegression

3 from widrowhoff import WidrowHoff

4 import time

5

6 import matplotlib.pyplot as plt

7 import numpy as np

8 from sklearn.datasets import load_breast_cancer

9 from sklearn.model_selection import train_test_split

10 from sklearn import preprocessing

11 from sklearn.preprocessing import StandardScaler

12

13 # Breast Cancer Dataset

14 # Load Data

15 data = load_breast_cancer ()

16 print(f"Class distribution: {sum(data.target == 1)} positive , {sum(data.target == 0)} negative")

17

18 # Normalize and Scale Sample Data

19 X = data.data

20 X = np.hstack ([X, np.ones((X.shape[0], 1))]) # add bias to data

21 scaler = StandardScaler ()

22 X_scaled = scaler.fit_transform(X)

23

24 # Grab labels and fix between -1 and 1

25 y = data.target

26 y = np.where(y == 1, 1, -1)

27

28 # split data into training and testing

29 X_train , X_Test , y_train , y_test = train_test_split(X_scaled , y)

30

31 #

32 # SVM Model

33 #

34 # add one to the weights matrix because we are absorbing the bias

35 svm = Linear_SVM(weights = np.random.uniform(-1, 1, X_train.shape [1]),

36 learning_rate =0.001 ,

37 C = 0)

38

39 # Fit model

40 start_time = time.time()

41 svm_loss_per_epoch = svm.fit(X_train , y_train , max_epochs =500)

42 end_time = time.time()

43 svm_time = end_time - start_time

University of New Mexico 18 CS 4/591, Fall 2024

6 CONCLUSION

44 print(f"SVM time: {end_time -start_time}")

45

46 # Predict Using Model

47 svm_preds = svm.predict(X_Test)

48

49 # Evaluate

50 svm_accuracy = np.sum(np.where(y_test == svm_preds , 1, 0)) / y_test.shape [0]

51 print(f"SVM Accuracy: {svm_accuracy}")

52

53 #

54 # Widrow Hoff

55 #

56 wh = WidrowHoff(num_inputs=X_train.shape[1], learning_rate =0.001) #Don ’t modify learning rate

57

58 # Fit model

59 start_time = time.time()

60 wh_loss_per_epoch = wh.fit(X_train , y_train , max_epochs =500)

61 end_time = time.time()

62 print(f"WH time: {end_time -start_time}")

63 wh_time = end_time - start_time

64

65

66 # Predict Using Model

67 wh_preds = wh.predict(X_Test)

68

69 # Evaluate

70 wh_accuracy = np.sum(np.where(y_test == wh_preds , 1, 0)) / y_test.shape [0]

71 print(f"WH Accuracy: {wh_accuracy}")

72

73 #

74 # Logistic Regression Model

75 #

76 logr = LogisticRegression(learning_rate =0.001 , num_iterations =500)

77

78 # Fit model

79 start_time = time.time()

80 logr_loss_per_epoch = logr.fit(X_train , y_train)

81 end_time = time.time()

82 logr_time = end_time - start_time

83 print(f"LR time: {end_time -start_time}")

84

85 # Predict Using Model

86 logr_preds = logr.predict(X_Test)

87

88 # Evaluate

89 logr_accuracy = np.sum(np.where(y_test == logr_preds , 1, 0)) / y_test.shape [0]

90 print(f"LR Accuracy: {logr_accuracy}")

91

92

93 #

94 # Compare Models

95 #

96

97 #Plot Loss

98

99 # print(f"wh shape: { wh_loss_per_epoch .shape [0]}")

100 # print(f"svm shape: { svm_loss_per_epoch .shape [0]}")

101 # print(f"logr shape: { logr_loss_per_epoch .shape [0]}")

102

103 plt.figure ()

104 plt.plot(wh_loss_per_epoch , label="Widrow -Hoff")

105 plt.plot(svm_loss_per_epoch , label="Linear SVM")

106 plt.plot(logr_loss_per_epoch , label="Log. Regression")

107 plt.yscale(’log’)

108 #plt.xscale(’log ’)

University of New Mexico 19 CS 4/591, Fall 2024

6 CONCLUSION

109 plt.title(’AVERAGE Loss Per Epoch’)

110 plt.xlabel(’Epoch’)

111 plt.ylabel(’Loss’)

112 plt.legend ()

113 plt.show()

114

115 # Compare Accuracy

116 plt.figure ()

117 plt.bar(["Widrow Hoff", "Linear SVM", "Log. Regression"],

118 [wh_accuracy , svm_accuracy , logr_accuracy],

119 color=[’blue’, ’green’, ’red’])

120 plt.title(’Comparison of Accuracy Between Binary Classification Models ’)

121 plt.xlabel(’Model’)

122 plt.ylabel(’Classification Accuracy ’)

123 plt.show()

124

125 # Compare Times

126 plt.figure ()

127 plt.bar(["Widrow Hoff", "Linear SVM", "Log. Regression"],

128 [wh_time , svm_time , logr_time],

129 color=[’blue’, ’green’, ’red’])

130 plt.title(’Comparison of Run Time Between Binary Classification Models ’)

131 plt.xlabel(’Model’)

132 plt.ylabel(’Time (s)’)

133 plt.show()

134 ## brute force test params

135 # new_param_test = False

136 # if new_param_test :

137 # weights = np.random.uniform (-1, 1, X_train.shape [1])

138 # format_str = "{: <20} {: <20} {: <20} {: <20}\n"

139 # for c in np.linspace (0 ,10 ,20):

140 # for a in np.linspace (0 ,1 ,20):

141 # svm = Linear_SVM (weights = weights ,

142 # learning_rate =a,

143 # C = c)

144 #

145 # # Fit model

146 # loss_per_epoch = svm.fit(X_train , y_train , max_epochs =1000)

147 # preds = svm.predict(X_Test)

148 # accuracy = np.sum(np.where(y_test == preds , 1, 0)) / y_test.shape [0]

149 # loss = svm.loss(y_test , preds)

150 # avg_loss = np.sum(loss) / y_test.shape [0]

151 #

152 #

153 # with open(’ param_search .txt ’, ’a+’) as f:

154 # f.write(format_str .format(c, a, accuracy , avg_loss))

Listing 4: test model breast cancer.py

1 import numpy as np

2 from sklearn.datasets import load_wine

3 from sklearn.model_selection import train_test_split

4 from sklearn.preprocessing import StandardScaler

5 from sklearn.metrics import accuracy_score

6 from sklearn.metrics import confusion_matrix

7 import seaborn as sns

8 import matplotlib.pyplot as plt

9

10 class weston_watkins:

11 def __init__(self , n_classes , n_features , learning_rate =.001, epochs =500):

12 # weight matrix

13 np.random.seed (25)

14 self.W = np.random.uniform(-1, 1, size=(n_classes , n_features))

15 # learning rate

University of New Mexico 20 CS 4/591, Fall 2024

6 CONCLUSION

16 self.lr = learning_rate

17 # number of epochs

18 self.epochs = epochs

19

20 # get loss for debugging

21 def loss_function(self , X_i , y_i):

22 correct_class_score = np.dot(self.W[y_i], X_i)

23 loss = 0

24 # loop over classes

25 for r in range(self.W.shape [0]):

26 if r != y_i:

27 margin = np.dot(self.W[r], X_i) - correct_class_score + 1

28 loss += max(0, margin)

29 return loss

30

31 def gradient(self , X_i , y_i):

32 # get gradient wrt weights

33 grad_W = np.zeros_like(self.W)

34 correct_class_val = np.dot(self.W[y_i], X_i)

35

36 # update for margin violation , to ensure correct class is only updated once

37 margin_violation = False

38 # loop over classes

39 for r in range(self.W.shape [0]):

40 if r != y_i:

41 margin = np.dot(self.W[r], X_i) - correct_class_val + 1

42 if margin > 0:

43 margin_violation = True

44 # incorrect class gradient

45 grad_W[r] += X_i

46 if margin_violation:

47 # correct class gradient

48 grad_W[y_i] -= X_i

49 return grad_W

50

51

52

53

54

55 def fit(self , X, y):

56 for epoch in range(self.epochs):

57 total_loss = 0

58 # loop over samples

59 for i in range(len(y)):

60 X_i = X[i]

61 y_i = y[i]

62

63 # get loss for debugging

64 loss = self.loss_function(X_i , y_i)

65 # get gradient

66 grad_W = self.gradient(X_i , y_i)

67

68 # update weights

69 self.W -= self.lr * grad_W

70

71 total_loss += loss

72

73 print(f"Epoch {epoch + 1}, Loss: {total_loss / len(y)}")

74

75 def predict(self , X):

76 scores = np.dot(X, self.W.T) # Compute scores for each class

77 # use class with highest score for prediction

78 return np.argmax(scores , axis =1)

79

80 wine = load_wine ()

University of New Mexico 21 CS 4/591, Fall 2024

6 CONCLUSION

81 X, y = wine.data , wine.target

82

83 scaler = StandardScaler ()

84 X = scaler.fit_transform(X)

85

86 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.5, random_state =25)

87

88 num_classes = len(set(y_train))

89 num_features = X_train.shape [1]

90

91 model = weston_watkins(n_classes=num_classes , n_features=num_features , learning_rate =.001 , epochs

=500)

92 model.fit(X_train , y_train)

93

94 y_pred = model.predict(X_test)

95

96 wine_acc = accuracy_score(y_test , y_pred)

97 print(f"Wine dataset accuracy: {wine_acc :.6f}")

98

99 # Generate confusion matrix

100 conf_matrix = confusion_matrix(y_test , y_pred)

101

102 # Plot the confusion matrix using seaborn

103 plt.figure(figsize =(8 ,6))

104 sns.heatmap(conf_matrix , annot=True , fmt="d", cmap="Blues", xticklabels =[f"Class {i}" for i in range(

num_classes)], yticklabels =[f"Class {i}" for i in range(num_classes)])

105 plt.ylabel(’Actual ’)

106 plt.xlabel(’Predicted ’)

107 plt.title(’Confusion Matrix ’)

108 plt.show()

Listing 5: weston watkins.py

University of New Mexico 22 CS 4/591, Fall 2024

	Introduction
	Classification Methods
	Widrow-Hoff Learning
	Implementation details)

	Linear Support Vector Machine (SVM)
	Implementation details

	Logistic Regression
	Implementation details

	Weston-Watkins SVM
	Implementation details)

	Data Sets
	Binary Classification Data Set
	Multi-Class Classification Data Set

	Evaluation
	Training
	Binary Classification with Breast Cancer Dataset
	Binary Classification with Wine Dataset
	Multiclass Training with the Wine DataSet

	Testing
	Binary Classification
	Results from Breast Cancer Dataset
	Results from Modified Wine Dataset
	Multiclass Classification with Wine Dataset

	Discussion
	Conclusion

