CS 4/591: Neural Network Assignment 1

Jyrus Cadman Shahriar Dipon Robert McCourt Bethany Pena Gabriel Urbaitis

17 September 2024

CONTENTS

Contents

1	Intr	roduction	3
2	Implementation		3
	2.1	The Perceptron Class	3
	2.2	Perceptron Learning Algorithm	4
		2.2.1 Perceptron Learning Algorithm Implementation	5
	2.3	Gradient Descent Algorithm	5
		2.3.1 Gradient Descent Algorithm Implementation	6
3 Tes		ting	6
	3.1	Testing Data	6
		3.1.1 Training and Evaluating	7
4	4 Discussion		7
5	Cor	nclusion	8

1 Introduction

The perceptron is the simplest neural network, consisting of a single input layer and output node. The perceptron is a linear classifier, capable of constructing a hyperplane through any set of linear separable data. As one of the building blocks of more advanced neural network architectures, it is a fundamental model to explore.

This report explores the implementation and testing of the perceptron, its learning algorithm, and the gradient descent optimization. The Perceptron Learning Algorithm updates the model's weights iteratively based on misclassified samples. Gradient Descent, a widely used optimization algorithm, searches for the set of weights that minimize a loss function. The Gradient Descent Algorithm does this by iteratively updating the weights in the direction of the negative gradient of the cost function until it discovers its local minimum.

Our implementation is tested on three different sets of randomly generated data which are then filtered into two classes, one greater and one less than a decision boundary specified for each case in the project requirements. The filtered samples are accumulated until there are 100 samples for each class in both the training and test sets.

We trained our model using both algorithms and using two different learning rates. We then compared the accuracy and explain the behavior we observe in our testing.

The goal of this work is to deepen our understanding of how these algorithms work through implementing them in Python code and testing their performance on randomly generated linearly separable data.

2 Implementation

2.1 The Perceptron Class

A perceptron is a simple neural network model with an input layer, an activation function, and an output node. The input layer has n nodes that pass n features to the output node. The output node calculates a linear combination of the inputs and their weights, then applies the activation function, a sign function, to produce a prediction.

The perceptron model can be implemented in Python by defining a Perceptron class. The perceptron class contains the following methods and attributes:

Attributes:

weights: an array containing the weights to be learned by the perceptron; they are randomly initialized before training.

bias: a float that is randomly initialized before training.

learning rate: the learning rate can be set by the user, otherwise is defaulted to 0.01.

Methods:

forward: computes the forward pass of the Perceptron; this is done by computing $\mathbf{w}^T \mathbf{X} + b$.

predict: applies the sign activation function to predict the class labels of the input samples based on the forward pass.

fit: finds the optimal weights according to the Perceptron Learning Algorithm.

2.2 Perceptron Learning Algorithm

The Perceptron Learning Algorithm aims to classify the data over multiple iterations or epochs. The algorithm aims to learn a hyperplane which will linearly separate the data into different classes. In the initial epochs, the perceptron will make the most errors. For data instances the perceptron fails to classify, the perceptron algorithm updates its weight based to correctly identify the misclassified label in a later epoch during training. The algorithm uses the error to "move" the hyperplane towards the correct classification. For example, if for some training sample, the correct label is y = 1 and the predicted label $\hat{y} = -1$, the error will be positive and the weights will be updated so that they move the hyperplane in such a way that this sample will be predicted positively.

Similarly, the update for bias takes place. The bias adjusts the distance of the hyperplane from the origin. Because of this, it is only updated using the error. It should be noted that the weights and bias updates only occur for data instances which are misclassified.

The following expression defines the iterative process for updating the weights and biases according to the Perceptron Learning Algorithm. The learning rate is a hyper-parameter given by α and defines how large a "step" we should in updating the weight vector.

$$\mathbf{W} \leftarrow \mathbf{W} + \alpha (y - \hat{y}) \mathbf{X}^{\mathbf{T}}$$

 $b \leftarrow b + \alpha (y - \hat{y})$

The Perceptron Learning Algorithm is most effective when the data is linearly separable because it depends on discovering the parameters of a hyperplane to separate the data into two classes. This can be beneficial if the data is linearly separable because we are guaranteed convergence. However, if the data is not linearly separable, it may not converge. Typically our data will not be linearly separable, so more robust methods for classification should be explored.

2.2.1 Perceptron Learning Algorithm Implementation

We can implement the Perceptron Learning Algorithm in Python as a fit method in the Perceptron class. The Python implementation follows the above algorithm by iterating through the training samples, obtaining a prediction for each sample, and updating the weight values according to the error, inputs, and learning rate. The bias is also updated according to the error and learning rate. The algorithm terminates when all classifications are correct, or the maximum number of epochs are reached.

2.3 Gradient Descent Algorithm

If we are given a loss function, such as the mean squared error, that describes the error in our predictions, we want to find the weights for our neural network which minimize the loss. Gradient Descent is an iterative optimization technique used to discover the set of weights that minimizes the loss function.

For our perceptron, we use the mean squared error (MSE) as our loss function.

$$MSE = \frac{1}{N} \sum_{n=0}^{N} (y - \hat{y})^2$$

The Gradient Descent Algorithm updates the weights in the negative direction of the gradient of the loss function with respect to the weights. This means it will iteratively step towards the local minimum of the loss function. The Gradient Descent Algorithm is given by the following expression. The function \mathcal{L} defines the loss function.

$$\mathbf{W} \leftarrow \mathbf{W} + \alpha \nabla \mathcal{L}(\mathbf{w}, \mathbf{X}, \mathbf{y})$$
$$b \leftarrow b + \alpha y$$

An advantage of using the Gradient Descent Algorithm is that is can be used with nonlinearly separable data and we can achieve convergence. The stability of its convergence depends on setting the learning rate sufficiently small that it can find the local or global minimum. One challenge with the Gradient Descent Algorithm is, depending on how the model's weights are initialized, it may find a local minimum rather than a global minimum.

2.3.1 Gradient Descent Algorithm Implementation

We implemented the Gradient Descent Algorithm in Python as a fit_GD method in the Perceptron class. Inside fit_GD and at the beginning of each epoch, the mean squared error for the training set is calculated. For data instances that are misclassified, the weights of the perceptron algorithm are updated in the negative direction of the loss function. This process is repeated across multiple epochs until the misclassified data instances are correctly classified. The number of epochs that will run inside fit_GD is a hyperparameter the user sets. However, if all the data instances are correctly classified before reaching the last epoch, the training stops.

3 Testing

3.1 Testing Data

We tested our algorithms using three different cases of training and testing data. Each training and test data set contained data that is classified into two classes, each class containing 100 samples each.

Case 1:

Class 1:
$$\{(x_1, x_2) | -x_1 + x_2 > 0\}$$

Class 2:
$$\{(x_1, x_2)| - x_1 + x_2 < 0\}$$

Case 2:

Class 1:
$$\{(x_1, x_2)|x_1 - 2x_2 + 5 > 0\}$$

Class 2:
$$\{(x_1, x_2)|x_1 - 2x_2 + 5 < 0\}$$

Case 3:

Class 1:
$$\{(x_1, x_2, x_3, x_4) | 0.5x_1 - x_2 - 10x_3 + x_4 + 50 > 0\}$$

Class 2:
$$\{(x_1, x_2, x_3, x_4) | 0.5x_1 - x_2 - 10x_3 + x_4 + 50 < 0\}$$

The data was generated by randomly sampling points from a uniform distribution that were consistent with the class definitions for each case. We used different random seeds for sampling the training and testing data to ensure we do not test and train the same data.

3.1.1 Training and Evaluating

As the learning rate is the only hyperparameter for binary class perceptrons, we tested two different learning rates, .01 and .001. For each dataset, we trained both using the Perceptron Learning Algorithm and the Gradient Descent Algorithm. The accuracy results from our training can be seen in figure 2. In figure 1, we can visualize the classification results for two different cases, learning rates, and algorithms.

Figure 1: Classification Results Examples

The Perceptron Learning Algorithm performed markedly better on the data generated for Case 3, classifying all samples correctly using both learning rates. This is compared to 88 percent for a .001 learning rate and 87.5 percent for a .01 learning rate using the Gradient Descent Algorithm.

We found that the random seeds we chose had a greater effect on the accuracy than the testing method, especially when using the larger .01 learning rate. We found that when using a larger learning rate, the accuracy for our model trained with Gradient Descent were below 25 percent, suggesting that in those cases that the algorithm may have been stuck in a local minima.

4 Discussion

In our testing, we would expect the linearly separable data to converge to 100 percent accuracy, however, we do see this for all test cases in our testing results. We believe that

Figure 2: Accuracy by Algorithm and Learning Rate for Different Datasets

this indicates further testing to find correct learning rate would be needed. If we had more time, we would attempt adjust the learning rate in response to our intermediate data on the loss each epoch.

5 Conclusion

This work explored the implementation and training of the Perceptron neural network using the Perceptron Learning Algorithm and the Gradient Descent Algorithm. We trained our Perceptron using three different cases of randomly generated data and two different learning rates. Although we did not obtain the performance we expected for the Gradient Descent Algorithm, we hypothesized why we think we didn't obtain the performance we expected, and what we would explore in the future to potentially improve our results.

Appendix

```
import sys
  import numpy as np
   class Perceptron:
       11 11 11
       A Perceptron classifier.
       This class implements both the original Perceptron learning
       [Rosenblatt 1958] and a variant using the gradient descent
10
          optimizaiton.
       Attributes
       _____
       weights : numpy.ndarray
14
           The weight vector of the Perceptron.
       bias : float
16
           The bias term of the Perceptron.
       11 11 11
19
       def __init__(self, num_inputs, learning_rate):
           Initialize the Perceptron with random weights and a bias
              , and set
           the learning rate.
           Parameters
           num\_inputs : int
               The number of input features.
           learning_rate : float
               The learning rate (default is 0.01).
30
           self.weights = np.random.uniform(-1, 1, num_inputs)
32
           self.bias = np.random.uniform(-1, 1)
```

```
self.learning_rate = learning_rate
35
       def forward(self, inputs):
            11 11 11
           Compute the forward pass of the Perceptron.
           Parameters
41
           inputs : numpy.ndarray
                The input samples.
43
44
           Returns
            _____
46
           numpy.ndarray
                The output of the Perceptron before thresholding.
48
            11 11 11
49
           return np.dot(inputs, self.weights) + self.bias
51
       def predict(self, inputs):
53
           Predict the class labels for the input samples.
54
           Parameters
56
           _____
57
           inputs: numpy.ndarray
                The input samples.
59
           Returns
           _____
           numpy.ndarray
                The predicted class labels (-1 or 1).
64
           11 11 11
65
           return np.where(self.forward(inputs) >= 0, 1, -1)
67
       def fit(self, data, labels, max_epochs=10000):
68
           Fit the Perceptron to the training data using the
70
               original algorithm.
```

```
Parameters
            data: numpy.ndarray
                The training samples.
            labels : numpy.ndarray
                The target values.
           max\_epochs: int, optional
                The maximum number of epochs. Defaults to 100.
80
           for epoch in range(max_epochs):
                all_correct = True # Assume all predictions will be
                   correct at the start of each epoch
                for inputs, label in zip(data, labels):
84
                    prediction = self.predict(inputs)
85
                    error = label - prediction
87
                    if error != 0:
                        all_correct = False # Set to False if any
                           prediction is incorrect
                        # Update the weights and bias based on the
                           error
                        update = self.learning_rate * error
                        self.weights += update * inputs
                        self.bias += update
94
                if all_correct:
96
                    print(f"All predictions correct after {epoch +
97
                       1} epochs.")
                    return
           print(f"Reached max_epochs ({max_epochs}).")
100
101
            .....
102
103
           Get to a point where once the loss plateaus, or doesn't
               get any better, exit at that epoch and return it
```

```
11 11 11
105
       def fit_GD(self, data, labels, max_epochs=10000,
          error_threshold=0.001, patience=50):
107
            Train the perceptron using gradient descent and stop
               early if the loss plateaus.
109
            Parameters
111
            _____
            data : np.ndarray
                Training data.
            labels : np.ndarray
114
                Training labels.
            max\_epochs: int, optional
116
                Maximum number of epochs. The default is 10000.
117
            error_threshold : float, optional
                Threshold for the change in loss to consider it as
119
                   plateaued. The default is 0.001.
            patience: int, optional
                Number of consecutive epochs to wait for improvement
121
                    before stopping. The default is 10.
            Returns
123
            _____
            None.
            H/H/H
126
            num_samples, num_features = data.shape
            best_loss = float('inf')
128
            epochs_without_improvement = 0
129
            for epoch in range(max_epochs):
131
                predictions = self.predict(data)
133
                errors = labels - predictions
134
                # Mean Squared Error (MSE) Loss (variable used to
136
                   assess convergence)
```

```
mse_loss = ((1 / num_samples) * np.sum(errors ** 2))
137
                    * 100
138
                # Gradient for weights
                dw = (-2 / num_samples) * np.dot(data.T, errors)
140
                # Gradient for bias
                db = (-2 / num_samples) * np.sum(errors)
142
143
                self.weights -= self.learning_rate * dw
145
                self.bias -= self.learning_rate * db
146
                # Check if predictions are correct
                all_correct = np.all(errors == 0)
148
                # Continually check convergence every 10 epochs
150
                if epoch % 10 == 0:
151
                    print(f"Epoch {epoch}/{max_epochs}, MSE Loss: {
                       mse_loss:.5f}")
153
                # Check for early stopping
                if mse_loss < best_loss - error_threshold:</pre>
155
                    best_loss = mse_loss
                    epochs_without_improvement = 0
                else:
158
                    epochs_without_improvement += 1
160
                if epochs_without_improvement >= patience:
161
                    print(f"Loss plateaued after {epoch + 1} epochs.
                       ")
                    return
163
                if all_correct:
165
                    print(f"All predictions correct after {epoch +
                        1} epochs.")
                    return
167
            print(f"Reached max_epochs ({max_epochs}).")
169
```

Listing 1: perceptron.py

```
import numpy as np
  import pandas as pd
  def generate_case1_data():
       np.random.seed(24)
       case1_class1 = []
       while len(case1_class1) < 100:
           samples = np.random.uniform(-25, 25, (100, 2))
           # Class 1: -x1 + x2 > 0
           filtered_samples = samples[samples[:, 1] > samples[:,
           case1_class1.extend(filtered_samples)
       case1_class1 = np.array(case1_class1[:100])
13
       case1_class2 = []
       while len(case1_class2) < 100:</pre>
16
           samples = np.random.uniform(-25, 25, (100, 2))
           # Class 2: -x1 + x2 < 0
           filtered_samples = samples[samples[:, 1] < samples[:,
19
              0]]
           case1_class2.extend(filtered_samples)
       case1_class2 = np.array(case1_class2[:100])
       X_train = np.vstack((case1_class1, case1_class2))
       y_train = np.hstack((np.ones(len(case1_class1)), -1 * np.
          ones(len(case1_class2))))
       # different seed for testing data
       np.random.seed(25)
       case1_class1_test = []
30
       while len(case1_class1_test) < 100:</pre>
           samples = np.random.uniform(-25, 25, (100, 2))
           filtered_samples = samples[samples[:, 1] > samples[:,
33
              011
           case1_class1_test.extend(filtered_samples)
34
```

```
case1_class1_test = np.array(case1_class1_test[:100])
36
       case1_class2_test = []
       while len(case1_class2_test) < 100:</pre>
           samples = np.random.uniform(-25, 25, (100, 2))
           filtered_samples = samples[samples[:, 1] < samples[:,</pre>
              011
           case1_class2_test.extend(filtered_samples)
       case1_class2_test = np.array(case1_class2_test[:100])
       X_test = np.vstack((case1_class1_test, case1_class2_test))
46
       y_test = np.hstack((np.ones(len(case1_class1_test)), -1 * np
          .ones(len(case1_class2_test))))
       return X_train, y_train, X_test, y_test
50
   def generate_case2_data():
       np.random.seed(24)
       case2_class1 = []
       while len(case2_class1) < 100:</pre>
           samples = np.random.uniform(-25, 25, (100, 2))
           # Class 1: x1 - 2x2 + 5 > 0
           filtered_samples = samples[samples[:, 0] - 2 * samples
              [:, 1] + 5 > 0
           case2_class1.extend(filtered_samples)
60
       case2_class1 = np.array(case2_class1[:100])
61
       case2_class2 = []
63
       while len(case2_class2) < 100:</pre>
           samples = np.random.uniform(-25, 25, (100, 2))
           # Class 2: x1 - 2x2 + 5 < 0
66
           filtered_samples = samples[samples[:, 0] - 2 * samples
              [:, 1] + 5 < 0
           case2_class2.extend(filtered_samples)
```

```
case2_class2 = np.array(case2_class2[:100])
70
       X_train = np.vstack((case2_class1, case2_class2))
       y_train = np.hstack((np.ones(len(case2_class1)), -1 * np.
73
          ones(len(case2_class2))))
       #different seed for testing data
75
       np.random.seed(25)
76
       case2_class1_test = []
       while len(case2_class1_test) < 100:</pre>
           samples = np.random.uniform(-25, 25, (100, 2))
           filtered_samples = samples[samples[:, 0] - 2 * samples
80
              [:, 1] + 5 > 0]
           case2_class1_test.extend(filtered_samples)
       case2_class1_test = np.array(case2_class1_test[:100])
       case2_class2_test = []
       while len(case2_class2_test) < 100:</pre>
           samples = np.random.uniform(-25, 25, (100, 2))
           filtered_samples = samples[samples[:, 0] - 2 * samples
              [:, 1] + 5 < 0
           case2_class2_test.extend(filtered_samples)
       case2_class2_test = np.array(case2_class2_test[:100])
       X_test = np.vstack((case2_class1_test, case2_class2_test))
       y_{test} = np.hstack((np.ones(len(case2_class1_test)), -1 * np
          .ones(len(case2_class2_test))))
       return X_train, y_train, X_test, y_test
96
   def to_csv(X_train, y_train, X_test, y_test, case_number):
       train_df = pd.DataFrame(X_train, columns=['x1', 'x2'])
99
       train_df['label'] = y_train
101
       test_df = pd.DataFrame(X_test, columns=['x1', 'x2'])
102
```

```
test_df['label'] = y_test
104
       train_df.to_csv(f'case{case_number}_train.csv', index=False)
       test_df.to_csv(f'case{case_number}_test.csv', index=False)
107
   def main():
       # Case 1
109
       X_train_1, y_train_1, X_test_1, y_test_1 =
110
          generate_case1_data()
111
       to_csv(X_train_1, y_train_1, X_test_1, y_test_1, case_number
          =1)
       # Case 2
113
       X_train_2, y_train_2, X_test_2, y_test_2 =
          generate_case2_data()
       to_csv(X_train_2, y_train_2, X_test_2, y_test_2, case_number
115
          =2)
116
   if __name__ == "__main__":
       main()
119
   def generate_case3_data():
120
       # Generate 100 samples for Class 1
       np.random.seed(24)
122
       X_{class1} = []
       while len(X_class1) < 100:</pre>
            samples = np.random.uniform(-25, 25, (100, 4))
            # Class 1: {(x1, x2, x3, x4) | 0.5x1
                                                        x2
                                                                10x3 +
               x4 + 50 > 0
            filtered_samples = samples[0.5 * samples[:, 0] - samples
127
               [:, 1] - 10 * samples[:, 2] + samples[:, 3] + 50 > 0]
            X_class1.extend(filtered_samples)
128
       X_{class1} = np.array(X_{class1}[:100])
130
131
       # Generate 100 samples for Class 2
       X_{class2} = []
133
       while len(X_class2) < 100:</pre>
134
```

```
samples = np.random.uniform(-25, 25, (100, 4))
            # Class 2: {(x1, x2, x3, x4) | 0.5x1
                                                        x2
                                                               10x3 +
136
               x4 + 50 < 0
            filtered_samples = samples[0.5 * samples[:, 0] - samples
137
               [:, 1] - 10 * samples[:, 2] + samples[:, 3] + 50 < 0]
           X_class2.extend(filtered_samples)
139
       X_{class2} = np.array(X_{class2}[:100])
140
       # Combine the data
142
       X_train = np.vstack((X_class1, X_class2))
       y_train = np.hstack((np.ones(len(X_class1)), -1 * np.ones(
          len(X_class2))))
146
       # Generate test data (similar to training data)
147
       #New random seed for different data
       np.random.seed(25)
149
       X_{class1test} = []
150
       while len(X_class1test) < 100:</pre>
            samples = np.random.uniform(-25, 25, (100, 4))
152
            # Class 1: \{(x1, x2, x3, x4) \mid 0.5x1\}
                                                        x2
                                                               10x3 +
               x4 + 50 > 0
            filtered_samples = samples[0.5 * samples[:, 0] - samples
154
               [:, 1] - 10 * samples[:, 2] + samples[:, 3] + 50 > 0
           X_class1test.extend(filtered_samples)
155
156
       X_class1test = np.array(X_class1[:100])
158
       # Generate 100 samples for Class 2
       X_{class2test} = []
       while len(X_class2test) < 100:</pre>
161
            samples = np.random.uniform(-25, 25, (100, 4))
            # Class 2: {(x1, x2, x3, x4) | 0.5x1
                                                        x2
                                                               10x3 +
163
               x4 + 50 < 0
            filtered_samples = samples[0.5 * samples[:, 0] - samples
               [:, 1] - 10 * samples[:, 2] + samples[:, 3] + 50 < 0]
           X_class2test.extend(filtered_samples)
165
```

Listing 2: ClassGen.py

```
import numpy as np
2 from perceptron import Perceptron
3 from plot import plot_and_draw
4 from ClassGen import generate_case1_data, generate_case2_data,
      generate_case3_data
  def get_data(case):
       Retrieve the appropriate dataset based on the case number.
       11 11 11
       data_generators = {
10
           '1': generate_case1_data,
           '2': generate_case2_data,
           '3': generate_case3_data
13
       }
14
       # Return the dataset based on the case, assuming valid input
           is provided
       return data_generators[case]()
17
   def train_and_evaluate(case, use_gd, learning_rate):
       print()
20
       11 11 11
21
       Train a Perceptron classifier and evaluate its performance.
       11 11 11
23
       X_train, y_train, X_test, y_test = get_data(case)
       n_features = X_train.shape[1]
```

```
perceptron = Perceptron(n_features, learning_rate)
27
       if use_gd:
           print(f"Using Gradient Descent learning with a learning
              rate of {learning_rate}")
           perceptron.fit_GD(X_train, y_train)
       else:
           print(f"Using Rosenblatt [1958] learning with a learning
               rate of {learning_rate}")
           perceptron.fit(X_train, y_train)
       y_pred = perceptron.predict(X_test)
       misclassified = np.sum(y_pred != y_test)
36
       accuracy = (len(y_test) - misclassified) / len(y_test) * 100
      print(f"Misclassified samples: {misclassified}")
39
       print(f"Accuracy: {accuracy:.2f}% \n")
41
       if int(case) != 3:
           plot_and_draw(X_test, y_test, y_pred, perceptron, case)
```

Listing 3: trainer.py

```
use_gd = use_gd_input == 'Y'
14
       return case, use_gd, learning_rate
  def validate_case(case):
       Validate if the input case is one of the expected values
          ('1', '2', '3').
       n n n
       valid_cases = {'1', '2', '3'}
       return case in valid_cases
  def main():
       11 11 11
       Main function to prompt user input, validate it, and train/
          evaluate the model.
       11 11 11
       case, use_gd, learning_rate = prompt_user_input()
       # Validate the case and proceed with training and evaluation
       if validate_case(case):
           train_and_evaluate(case, use_gd, learning_rate)
       else:
           print("Invalid input. Please enter 1, 2, or 3.")
  if __name__ == "__main__":
       main()
```

Listing 4: main.py