CS 4/591: Neural Network

Assignment 1

Jyrus Cadman Shahriar Dipon Robert McCourt
Gabriel Urbaitis

17 September 2024

Bethany Pena

CONTENTS CONTENTS

Contents

(1 Introduction| 3

2 Implementation|
[2.1 The Perceptron Class|
[2.2 Perceptron Learning Algorithm|

[2.2.1 Perceptron Learning Algorithm Implementation|
[2.3 Gradient Descent Algorithm|
[2.3.1 Gradient Descent Algorithm Implementation|.

S O Ot o W W

[3.1 ‘Testing Data]

[3.1.1 Training and Evaluatingl

D ol 7

5 Conclusion| 8

University of New Mexico 2 CS 4/591, Fall 2024

2 IMPLEMENTATION

1 Introduction

The perceptron is the simplest neural network, consisting of a single input layer and output
node. The perceptron is a linear classifier, capable of constructing a hyperplane through any
set of linear separable data. As one of the building blocks of more advanced neural network
architectures, it is a fundamental model to explore.

This report explores the implementation and testing of the perceptron, its learning algo-
rithm, and the gradient descent optimization. The Perceptron Learning Algorithm updates
the model’s weights iteratively based on misclassified samples. Gradient Descent, a widely
used optimization algorithm, searches for the set of weights that minimize a loss function.
The Gradient Descent Algorithm does this by iteratively updating the weights in the direc-
tion of the negative gradient of the cost function until it discovers its local minimum.

Our implementation is tested on three different sets of randomly generated data which are
then filtered into two classes, one greater and one less than a decision boundary specified for
each case in the project requirements. The filtered samples are accumulated until there are
100 samples for each class in both the training and test sets.

We trained our model using both algorithms and using two different learning rates. We
then compared the accuracy and explain the behavior we observe in our testing.

The goal of this work is to deepen our understanding of how these algorithms work through
implementing them in Python code and testing their performance on randomly generated

linearly separable data.

2 Implementation

2.1 The Perceptron Class

A perceptron is a simple neural network model with an input layer, an activation function,
and an output node. The input layer has n nodes that pass n features to the output node.
The output node calculates a linear combination of the inputs and their weights, then applies
the activation function, a sign function, to produce a prediction.

The perceptron model can be implemented in Python by defining a Perceptron class. The

perceptron class contains the following methods and attributes:
Attributes:

weights: an array containing the weights to be learned by the perceptron; they are

randomly initialized before training.

University of New Mexico 3 CS 4/591, Fall 2024

2.2 Perceptron Learning Algorithm 2 IMPLEMENTATION

bias: a float that is randomly initialized before training.

learning rate: the learning rate can be set by the user, otherwise is defaulted to 0.01.

Methods:

forward: computes the forward pass of the Perceptron; this is done by computing
wIX 4 0.

predict: applies the sign activation function to predict the class labels of the input

samples based on the forward pass.

fit: finds the optimal weights according to the Perceptron Learning Algorithm.

2.2 Perceptron Learning Algorithm

The Perceptron Learning Algorithm aims to classify the data over multiple iterations or
epochs. The algorithm aims to learn a hyperplane which will linearly separate the data into
different classes. In the initial epochs, the perceptron will make the most errors. For data
instances the perceptron fails to classify, the perceptron algorithm updates its weight based
to correctly identify the misclassified label in a later epoch during training. The algorithm
uses the error to "move” the hyperplane towards the correct classification. For example, if
for some training sample, the correct label is y = 1 and the predicted labely = —1, the error
will be positive and the weights will be updated so that they move the hyperplane in such
a way that this sample will be predicted positively.

Similarly, the update for bias takes place. The bias adjusts the distance of the hyperplane
from the origin. Because of this, it is only updated using the error. It should be noted that
the weights and bias updates only occur for data instances which are misclassified.

The following expression defines the iterative process for updating the weights and biases
according to the Perceptron Learning Algorithm. The learning rate is a hyper-parameter

given by « and defines how large a "step” we should in updating the weight vector.

W W +aly —9)XT
b<—b+aly—17)

The Perceptron Learning Algorithm is most effective when the data is linearly separable

because it depends on discovering the parameters of a hyperplane to separate the data into

University of New Mexico 4 CS 4/591, Fall 2024

2.3 Gradient Descent Algorithm 2 IMPLEMENTATION

two classes. This can be beneficial if the data is linearly separable because we are guaranteed
convergence. However, if the data is not linearly separable, it may not converge. Typically
our data will not be linearly separable, so more robust methods for classification should be

explored.

2.2.1 Perceptron Learning Algorithm Implementation

We can implement the Perceptron Learning Algorithm in Python as a fit method in the
Perceptron class. The Python implementation follows the above algorithm by iterating
through the training samples, obtaining a prediction for each sample, and updating the
weight values according to the error, inputs, and learning rate. The bias is also updated
according to the error and learning rate. The algorithm terminates when all classifications

are correct, or the maximum number of epochs are reached.

2.3 Gradient Descent Algorithm

If we are given a loss function, such as the mean squared error, that describes the error in
our predictions, we want to find the weights for our neural network which minimize the loss.
Gradient Descent is an iterative optimization technique used to discover the set of weights
that minimizes the loss function.

For our perceptron, we use the mean squared error (MSE) as our loss function.

N

1 2
MSE:NZ(?J—?J)

n=0

The Gradient Descent Algorithm updates the weights in the negative direction of the
gradient of the loss function with respect to the weights. This means it will iteratively step
towards the local minimum of the loss function. The Gradient Descent Algorithm is given

by the following expression. The function £ defines the loss function.

W W +aVL(w, X,y)
b+ b+ ay

An advantage of using the Gradient Descent Algorithm is that is can be used with non-
linearly separable data and we can achieve convergence. The stability of its convergence

depends on setting the learning rate sufficiently small that it can find the local or global

University of New Mexico 5 CS 4/591, Fall 2024

3 TESTING

minimum. One challenge with the Gradient Descent Algorithm is, depending on how the

model’s weights are initialized, it may find a local minimum rather than a global minimum.

2.3.1 Gradient Descent Algorithm Implementation

We implemented the Gradient Descent Algorithm in Python as a fit_GD method in the
Perceptron class. Inside £it_GD and at the beginning of each epoch, the mean squared error
for the training set is calculated. For data instances that are misclassified, the weights of
the perceptron algorithm are updated in the negative direction of the loss function. This
process is repeated across multiple epochs until the misclassifed data instances are correctly
classified. The number of epochs that will run inside £it_GD is a hyperparameter the user
sets. However, if all the data instances are correctly classified before reaching the last epoch,

the training stops.

3 Testing

3.1 Testing Data

We tested our algorithms using three different cases of training and testing data. Each train-
ing and test data set contained data that is classified into two classes, each class containing

100 samples each.
Case 1 :

Class 1: {(x1,x2)| — 21 + 22 > 0}
Class 2: {(x1,22)| — 21 + x9 < 0}

Case 2 :

Class 1: {(z1,22)|z1 — 222+ 5 > 0}
Class 2: {(x1,x9)|z1 — 222+ 5 < 0}

Case 3 :

Class 1: {(x1, 2,23, 14)]0.521 — x9 — 1023 + 24 + 50 > 0}
Class 2: {(x1, %2, 23,24)]0.521 — 2z — 1023 + 24 + 50 < 0}

The data was generated by randomly sampling points from a uniform distribution that
were consistent with the class definitions for each case. We used different random seeds for

sampling the training and testing data to ensure we do not test and train the same data.

University of New Mexico 6 CS 4/591, Fall 2024

4 DISCUSSION

3.1.1 Training and Evaluating

As the learning rate is the only hyperparameter for binary class perceptrons, we tested two
different learning rates, .01 and .001. For each dataset, we trained both using the Perceptron
Learning Algorithm and the Gradient Descent Algorithm. The accuracy results from our
training can be seen in figure 2] In figure[l] we can visualize the classification results for two

different cases, learning rates, and algorithms.

Classification for Case: 1 Classification for Case: 2

boo
boo

Feature 2
o
Feature 2

(a) Case 1: Perceptron Learning Algorithm (b) Case 2: Gradient Descent (Learning Rate =
(Learning Rate = 0.01) 0.001)

Figure 1: Classification Results Examples

The Perceptron Learning Algorithm performed markedly better on the data generated for
Case 3, classifying all samples correctly using both learning rates. This is compared to 88
percent for a .001 learning rate and 87.5 percent for a .01 learning rate using the Gradient
Descent Algorithm.

We found that the random seeds we chose had a greater effect on the accuracy than the
testing method, especially when using the larger .01 learning rate. We found that when
using a larger learning rate, the accuracy for our model trained with Gradient Descent were
below 25 percent, suggesting that in those cases that the algorithm may have been stuck in

a local minima.

4 Discussion

In our testing, we would expect the linearly separable data to converge to 100 percent

accuracy, however, we do see this for all test cases in our testing results. We believe that

University of New Mexico 7 CS 4/591, Fall 2024

5 CONCLUSION

Case 1 Accuracy by Algorithm and Learning Rate Case 2 Accuracy by Algorithm and Learning Rate Case 3 Accuracy by Algorithm and Learning Rate

100

B Learning Rate: 0.001 N Learning Rate: 0.001
I Learning Rate: 0.01

BN Learning Rate: 0.001
I Learning Rate: 0.01

N Learning Rate: 0.01
98 +

96 1

92 4

Accuracy (%)
Accuracy (%)
. .
Accuracy (%)
, .

90 1

88 4

86

Perceptron Learning Gradient Descent Perceptron Learning Gradient Descent Perceptron Learning Gradient Descent
Learning Algorithm Learning Algorithm Learning Algorithm

Figure 2: Accuracy by Algorithm and Learning Rate for Different Datasets

this indicates further testing to find correct learning rate would be needed. If we had more
time, we would attempt adjust the learning rate in response to our intermediate data on the

loss each epoch.

5 Conclusion

This work explored the implementation and training of the Perceptron neural network using
the Perceptron Learning Algorithm and the Gradient Descent Algorithm. We trained our
Perceptron using three different cases of randomly generated data and two different learning
rates. Although we did not obtain the performance we expected for the Gradient Descent
Algorithm, we hypothesized why we think we didn’t obtain the performance we expected,

and what we would explore in the future to potentially improve our results.

University of New Mexico 8 CS 4/591, Fall 2024

5 CONCLUSION

Appendix

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

import sys

import numpy as np

class Perceptron:

nann

A Perceptron classifier.

This class implements both the original Perceptron learning
algorithm
[Rosenblatt 1958] and a variant using the gradient descent

optimizaiton.

Attridbutes
wetghts : numpy.ndarray

The weight wector of the Perceptron.
bias : float

The bias term of the Perceptron.

nmann

def __init__(self, num_inputs, learning_rate):
Inittialize the Perceptron with random weights and a bias
, and set

the learning rate.

Parameters
num_tnputs : int
The number of input features.
learning_rate : float
The learning rate (default is 0.01).
self .weights = np.random.uniform(-1, 1, num_inputs)

self .bias = np.random.uniform(-1, 1)

University of New Mexico 9 CS 4/591, Fall 2024

5 CONCLUSION

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

def

def

def

self.learning_rate = learning_rate

forward (self, inputs):

niamnn

Compute the forward pass of the Perceptron.

Parameters

tnputs : numpy.ndarray

The tnput samples.

Returns

numpy .ndarray

The output of the Perceptron before thresholding.

nann

return np.dot(inputs, self.weights) + self.bias

predict (self, inputs):

niamnn

Predict the class labels for the input samples.

Parameters
tnputs : numpy.ndarray

The tnput samples.

Returns
numpy .ndarray

The predicted class labels (-1 or 1).

niamnn

return np.where(self.forward(inputs) >= 0, 1, -1)

fit(self, data, labels, max_epochs=10000):

niamnn

Fit the Perceptron to the training data using the

original algorithm.

University of New Mexico 10 CS 4/591, Fall 2024

5 CONCLUSION

71

72 Parameters

s

74 data : numpy.ndarray

75 The training samples.

76 labels : numpy.ndarray

77 The target walues.

78 max_epochs : int, optional

79 The mazimum number of epochs. Defaults to 100.
%0 "o

81 for epoch in range(max_epochs):

82 all_correct = True # Assume all predictions will be

correct at the start of each epoch

83

84 for inputs, label in zip(data, labels):

85 prediction = self.predict(inputs)

86 error = label - prediction

87

88 if error != O:

89 all_correct = False # Set to False 4f any

prediction 1S tnmcorrect

90

91 # Update the weights and bias based on the
error

92 update = self.learning_rate * error

93 self .weights += update * inputs

94 self .bias += update

95

96 if all_correct:

97 print (£"All predictions correct after {epoch +

1} epochs.")

98 return

99

100 print (f"Reached max_epochs ({max_epochs}).")

101

102 wnn

103 Get to a point where once the loss plateaus, or doesn’t

get any better, exit at that epoch and return it

University of New Mexico 11 CS 4/591, Fall 2024

5 CONCLUSION

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

niann

def fit_GD(self, data, labels, max_epochs=10000,
error_threshold=0.001, patience=50):
mnimnn
Train the perceptron using gradient descent and stop

early i1f the loss plateaus.

Parameters
data : mnp.ndarray
Training data.
labels : mnp.ndarray
Training labels.
mazr_epochs : int, optional
Mazimum number of epochs. The default s 10000.
error_threshold : float, optional
Threshold for the change in loss to consider %t as
plateaued. The default is 0.001.
patience : int, optional
Number of consecutive epochs to watt for improvement

before stopping. The default s 10.

None.

nann

num_samples, num_features = data.shape
best_loss = float(’inf’)

epochs_without_improvement = 0

for epoch in range(max_epochs):

predictions = self.predict(data)

errors = labels - predictions

Mean Squared Error (MSE) Loss (vartable used to

assess con’ue’r‘gence)

University of New Mexico 12 CS 4/591, Fall 2024

5 CONCLUSION

137 mse_loss = ((1 / num_samples) * np.sum(errors *x 2))
* 100

138

139 # Gradient for wetghts

140 dw = (-2 / num_samples) * np.dot(data.T, errors)

141 # Gradient for bias

142 db = (-2 / num_samples) * np.sum(errors)

143

144 self .weights -= self.learning_rate * dw

145 self .bias -= self.learning_rate * db

146

147 # Check 1f predictions are correct

148 all_correct = np.all(errors == 0)

149

150 # Continually check convergence every 10 epochs

151 if epoch % 10 == O0:

152 print (f"Epoch {epoch}/{max_epochs}, MSE Loss: {

mse_loss:.5f}")

153

154 # Check for early stopping

155 if mse_loss < best_loss - error_threshold:

156 best_loss = mse_loss

157 epochs_without_improvement = 0

158 else:

159 epochs_without_improvement += 1

160

161 if epochs_without_improvement >= patience:

162 print (f"Loss plateaued after {epoch + 1} epochs.
"

163 return

164

165 if all_correct:

166 print (£"All predictions correct after {epoch +

1} epochs.")
167 return
168

169 print (f"Reached max_epochs ({max_epochs}).")

Listing 1: perceptron.py

University of New Mexico 13 CS 4/591, Fall 2024

5 CONCLUSION

10

11

12

13

14

15

16

17

18

20

21

22

23

24

26

27

28

29

30

31

32

33

34

import numpy as np

import pandas as pd

def generate_casel_data():

np.random.seed (24)
casel_classl = []
while len(casel_classl) < 100:
samples = np.random.uniform(-25, 25, (100, 2))
Class 1: -z1 + z2 > 0
filtered_samples = samples[samples[:, 1] > samples/[:,
011

casel_classl.extend(filtered_samples)

casel_class1 np.array(casel_class1[:100])

[]
while len(casel_class2) < 100:

casel_class?2

samples = np.random.uniform(-25, 25, (100, 2))

Class 2: -zl + z2 < O

filtered_samples = samples[samples([:, 1] < samplesl[:,
011

casel_class2.extend(filtered_samples)

casel_class2 = np.array(casel_class2[:100])
X_train = np.vstack((casel_classl, casel_class2))
y_train = np.hstack((np.ones(len(casel_classl)), -1 * np.

ones (len(casel_class2))))

different seed for testing data
np.random.seed (25)

casel_classl_test = []
while len(casel_classl_test) < 100:
samples = np.random.uniform(-25, 25, (100, 2))
filtered_samples = samples[samples[:, 1] > samples[:,
011

casel_classl_test.extend(filtered_samples)

University of New Mexico 14 CS 4/591, Fall 2024

5 CONCLUSION

35

36 casel_classl_test = np.array(casel_classl_test[:100])

37

38 casel_class2_test = []

39 while len(casel_class2_test) < 100:

40 samples = np.random.uniform(-25, 25, (100, 2))

1 filtered_samples = samples[samples[:, 1] < samplesl[:,
0]1]

42 casel_class2_test.extend(filtered_samples)

43

14 casel_class2_test = np.array(casel_class2_test[:100])

45

16 X_test = np.vstack((casel_classl_test, casel_class2_test))

a7 y_test = np.hstack((np.ones(len(casel_classl_test)), -1 * np

.ones(len(casel_class2_test))))
48
49 return X_train, y_train, X_test, y_test
50
51

52 def generate_case2_data():

53 np.random.seed (24)

54 case2_classl = []

55 while len(case2_classl) < 100:

56 samples = np.random.uniform(-25, 25, (100, 2))

57 # Class 1: z1 - 2z2 + &6 > 0

58 filtered_samples = samples[samples[:, 0] - 2 * samples
[:, 11 + 5 > 0]

59 case2_classl.extend(filtered_samples)

60

61 case2_classl = np.array(case2_class1[:100])

62

63 case2_class2 = []

64 while len(case2_class2) < 100:

65 samples = np.random.uniform(-25, 25, (100, 2))

66 # Class 2: z1 - 2z2 + 5 < 0

67 filtered_samples = samples[samples[:, 0] - 2 * samples
[:, 11 + 5 < 0]

68 case2_class2.extend(filtered_samples)

University of New Mexico 15 CS 4/591, Fall 2024

5 CONCLUSION

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

def

case2_class?2 np.array(case2_class2[:100])

X_train np.vstack ((case2_classl, case2_class2))

y_train np.hstack ((np.ones(len(case2_classl1)), -1 * np.

ones(len(case2_class2))))

#dvfferent seed for testing data
np.random.seed (25)
case2_classl_test = []
while len(case2_classl_test) < 100:
samples = np.random.uniform(-25, 25, (100, 2))
filtered_samples = samples[samples[:, 0] - 2 * samples
[:, 11 + 5 > 0]

case2_classl_test.extend(filtered_samples)

case2_classl_test np.array(case2_classl_test[:100])

[]
while len(case2_class2_test) < 100:

case2_class2_test

samples = np.random.uniform(-25, 25, (100, 2))
filtered_samples = samples[samples[:, 0] - 2 * samples
[:, 1] + 5 < 0]

case2_class2_test.extend(filtered_samples)

case2_class2_test = np.array(case2_class2_test[:100])

X_test np.vstack((case2_classl_test, case2_class2_test))
y_test = np.hstack((np.ones(len(case2_classl_test)), -1 * np

.ones (len(case2_class2_test))))
return X_train, y_train, X_test, y_test
to_csv(X_train, y_train, X_test, y_test, case_number):
train_df = pd.DataFrame(X_train, columns=[’x1’, ’x27’])

train_df[’label’] = y_train

test_df = pd.DataFrame(X_test, columns=[’x1’, ’x2’])

University of New Mexico 16 CS 4/591, Fall 2024

5 CONCLUSION

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

test_df [’label’] = y_test

train_df.to_csv(f’case{case_number}_train.csv’,

test_df .to_csv(f’case{case_number}_test.csv’,

def main():

if

Case 1
X_train_1, y_train_1,

generate_casel_data ()

to_csv(X_train_1, y_train
Case 2

X_train_2, y_train_2,

generate_case2_data ()

to_csv(X_train_2, y_train
_name__ == "__main__":
main ()

def generate_case3_data():

X_test_1,

-1,

X_test_2,

-2,

X_test_1

X_test_2

Generate 100 samples for Class 1

np.random.seed (24)
(]

X_classl =

while len(X_classl) < 100:

samples =
Class 1: {(=z1,

z4 + 50 > 0}
filtered_samples =

[:, 1]

T2,

3,

- 10 * samples/[:,

np.random.uniform(-25,

z4) | 0.

samples [0.5 =*

2] +

X_classl.extend(filtered_samples)

X_classl =

np.array (X_class1[:100])

Generate 100 samples for Class 2

(]

X_class2 =

while len(X_class2) < 100:

University of New Mexico

17

y_test_1

, y_test_1,

y_test_2

, y_test_2,

25,
S5z1

samples[:,

samples[:,

index=False)

index=False)

case_number

case_number

(100, 4))

T2 10x3 +
0] -
3] + 50 > 0]

samples

CS 4/591, Fall 2024

5 CONCLUSION

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

159

160

161

162

163

164

165

samples = np.random.uniform(-25, 25, (100, 4))

Class 2: {(z1, z2, =3, =z4) | 0.5z1 T2 10x3 +
z4 + 50 < 0}
filtered_samples = samples[0.5 * samples[:, 0] - samples

[:, 1] - 10 * samples[:, 2] + samples[:, 3] + 50 < 0]
X_class2.extend(filtered_samples)

X_class2 = np.array(X_class2[:100])

Combine the data
np.vstack ((X_classl, X_class2))

X_train
y_train = np.hstack((np.ones(len(X_classl)), -1 * np.ones/(
len(X_class2))))

Generate test data (similar to training data)
#New random seed for different data
np.random.seed (25)
X_classltest = []
while len(X_classltest) < 100:

samples = np.random.uniform(-25, 25, (100, 4))

Class 1: {(z1, z2, z3, =z4) | 0.5z1 T2 10z3 +
g4 + 50 > 0}
filtered_samples = samples[0.5 * samples[:, 0] - samples

[:, 1] - 10 * samples[:, 2] + samples[:, 3] + 50 > 0]
X_classltest.extend(filtered_samples)

X_classltest = np.array(X_class1[:100])

Generate 100 samples for Class 2
X_class2test = []
while len(X_class2test) < 100:
samples = np.random.uniform(-25, 25, (100, 4))

Class 2: {(z1, z2, =3, =z4) | 0.5z1 z2 10x3 +
z4 + 50 < 0}
filtered_samples = samples[0.5 * samples[:, 0] - samples

[:, 11 - 10 * samples[:, 2] + samples[:, 3] + 50 < 0]
X_class2test.extend(filtered_samples)

University of New Mexico 18 CS 4/591, Fall 2024

5 CONCLUSION

167

168

170

171

172

173

X_class2test = np.array(X_class2[:100])

Combine the data
X_test np.vstack ((X_classltest, X_class2test))

y_test = np.hstack ((np.ones(len(X_classl1)), -1 * np.ones(len
(X_class2))))

return X_train, y_train, X_test, y_test

Listing 2: ClassGen.py

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

import numpy as np

from perceptron import Perceptron

from plot import plot_and_draw

from ClassGen import generate_casel_data, generate_case2_data,

generate_case3_data

def get_data(case):

nann

Retrieve the appropriate dataset based on the case number.

nann

data_generators = {
’1’: generate_casel_data,
’2’: generate_case2_data,
’3’: generate_case3_data
b

Return the dataset based on the case, assuming wvalid input
15 provided

return data_generators[case] ()

def train_and_evaluate(case, use_gd, learning_rate):
print ()

noann

Train a Perceptron classifier and evaluate tts performance.

nann

X_train, y_train, X_test, y_test = get_data(case)

n_features = X_train.shape[1]

University of New Mexico 19 CS 4/591, Fall 2024

5 CONCLUSION

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

perceptron = Perceptron(n_features, learning_rate)

if use_gd:
print (£"Using Gradient Descent learning with a learning
rate of {learning_ratel}")
perceptron.fit_GD(X_train, y_train)
else:
print (£"Using Rosenblatt [1958] learning with a learning
rate of {learning_ratel}")

perceptron.fit(X_train, y_train)

y_pred = perceptron.predict(X_test)
misclassified = np.sum(y_pred != y_test)

accuracy = (len(y_test) - misclassified) / len(y_test) * 100

print (f"Misclassified samples: {misclassifiedl}")

print (f"Accuracy: {accuracy:.2f}% \n")

if int(case) != 3:

plot_and_draw(X_test, y_test, y_pred, perceptron, case)

Listing 3: trainer.py

10

11

12

from trainer import train_and_evaluate

def prompt_user_input():

nann

Prompt the user for input regarding the case, learning
algorithm, and learning rate.
Returns a tuple containing (case, use_gd, learning_rate).

niumn

case = input("Which case would you like to test? (1, 2, or
3): \n")

use_gd_input = input("Use gradient descent? (Y/N): \n").
strip () .upper ()

learning _rate = float(input("Please select a learning rate:
(0.001 - 0.1): \n"))

Validate the use_gd input

University of New Mexico 20 CS 4/591, Fall 2024

5 CONCLUSION

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

def

def

if

use_gd = use_gd_input == 'Y’

return case, use_gd, learning_rate

validate_case (case):

nin

Validate 41f the input case ts one of the exzpected wvalues
(;1;, ;2;’ ;3;)‘

valid_cases = {’1’, ’2’, ’3’}

return case in valid_cases

main () :
Main function to prompt user input, validate <t, and train/
evaluate the model.

nann

case, use_gd, learning_rate = prompt_user_input ()

Validate the case and proceed wtth training and evaluation
if validate_case(case):

train_and_evaluate (case, use_gd, learning_rate)

else:

print ("Invalid input. Please enter 1, 2, or 3.")
__name__ == "__main__":
main ()

Listing 4: main.py

University of New Mexico 21 CS 4/591, Fall 2024

	Introduction
	Implementation
	The Perceptron Class
	Perceptron Learning Algorithm
	Perceptron Learning Algorithm Implementation

	Gradient Descent Algorithm
	Gradient Descent Algorithm Implementation

	Testing
	Testing Data
	Training and Evaluating

	Discussion
	Conclusion

