

Project 3: Neural Networks
Gabriel Urbaitis and Rahul Payeli

In this project, we once again performed audio
classification in two data modalities. The features
extracted from Project 2, and images of spectral
frequencies over time. We created a Multi-Layer
Perceptron model for the former and utilized a
Convolutional Neural Network and Transfer
Learning on the latter. Our comparisons within
each learning method and between each one
follow with regard to performance and accuracy.

I. Introduction
 In the project, we are tasked with using
Multi-Layer Perceptrons (MLPs), convolutional
neural networks (CNNs), and Transfer Learning.
 For our extracted Project 2 features, we
employ MLPs, for image classification, we employ
CNNs, which are particularly adept at recognizing
patterns in image data. Additionally, we us transfer
learning by adapting the VGG-16, GoogleNet and
Resnet models, pre-trained neural networks for
image classification tasks.

II. Design and Implementation

A. Data Conversion

We transformed the raw audio files into
spectral images in an RGB colormap. These are
visual representations of spectral frequencies in a
sound over time. Applied normalization, such that
the loudest point will reach +1 or -1, and all other
points are scaled accordingly, in proportion. This
ensures that the output signal utilizes the entire
available dynamic range, and helps in retaining the
audio quality while enhancing the performance of
the following processing stages. To translate the
audio signals from the time domain to the frequency
domain, we applied the Short-Time Fourier
Transform (STFT). In this transformation, we chose
the framesize as 2048 and hopsize as 512, which
play a very crucial role in maintaining the window
size and successive window overlaps that directly

affects the image resolution. Then this is converted
to the log scale which helps to compress a wide
range of sound intensities onto a scale closer to the
range of human auditory perception. Each
spectrogram is plotted without any axes to make sure
we get clean images for feeding into neural
networks. These images are saved in RGB format
for better pattern recognition with the neural
networks.

Log spectrogram of a Rock music file

B. Data Splitting

 We used an 80-20 split on the data. 80% is
allocated to training, and 20% goes to validation and
testing in equal parts. We followed the same strategy
in all the neural networks. There is no overlap of
data between the splits.

Data Splitting part

C. Data Augmentation

 Random rotation of images by 15 degrees
was applied to the training set data. This increased
the diversity of the training set by applying random
transformations to the original images. The strategy

prevents the model from overfitting and increases its
ability to generalize new data.

Data Augmentation part

D. Convolutional Neural Network (CNN)

 The CNN architecture, ConvolNeuNet has been
designed to classify spectral images of music files into
the genre to which it belong. This model has 3
convolutional layers, which increases the number of
filters from 32 to 96. Each convolutional layer used a
3*3 sized kernel, stride of 1, and padding of 1. ReLU is
applied throughout the convolutional layers for
non-linearity. Max pooling is applied post ReLU in each
convolutional layer of size 2*2, which reduces the
computational load by enhancing the detection of
important features.

After the convolution, the layers are flattened
i.e., Fully connected layers are formed. This includes a
series of layers that reduce in size, from 512 to 10
(number of classes for classification). Also some dropout
layers, and ReLU functions are applied between these
dense fully connected layers for better and faster
classifications.

We have used the default pytorch lightning for training
the CNN, which reduced the complexity of training
loops and improved the reproducibility. We have used
Adam optimizer with a learning rate of 0.001 for
optimizing the weights in the network and learning
better. This will help us to reach the global maximum.

CNN Architecture

We have used ‘ReduceLROnPlateau’, a
learning rate scheduler, which is useful in adjusting the
learning rate by reducing it by a factor of 0.1 if there is
no improvement seen in the last 3 epochs. This is quite a
useful technique in the coming stages of training for
better learning and classification by the network by
reducing the loss.

Learning scheduler part

We have implemented early stopping of the
algorithm to ensure efficient training. This mechanism
will stop the training if there is no improvement in the
accuracy in the last 5 epochs. This is very useful in
saving the memory of computational resources and
helping the model from degrading.

Early stopping part

Initially, we tested with 5-fold data preparation, each
fold having an 80-20 split but that resulted in ending up
with 0.8023 test accuracy which gave a balanced
accuracy of 0.4634. This clearly says that it is
overfitting.

After we did the 80-20 split with 20 epochs, a Dropout
of 0.5, and a learning rate of 0.001, gave the below
accuracy of 0.4600. The below plot represents the
performance of the CNN based on train accuracy, test

accuracy, train loss, and test loss. It is evident that the
model is learning and trying to classify the image
properly.

The below confusion matrix shows that CNN is
able to classify classical, country, jazz, metal,
and pop easily but it is struggling to classify the
remaining genres correctly. We can also see
that it is more struggling to classify the blues
and rock genres.

E. Transfer learning

In transfer learning, we chose

spectrogram-based classification. They represent
audio signals with frequency and time information,
which is very important for distinguishing the audio
files. These files are very useful for convolutional
neural networks, in finding patterns and classifying
the images.

VGG-16 is a very well-known
deep-learning network for classifying images with
high accuracy. The architecture of this network is
simple and yet captures the effective patterns for
image classification, which is evident in our
experiment on this network. VGG is initially
pre-trained on an Image-net dataset, which has a
very diverse set of images. To use this for our task,
we need to freeze the convolutional layers to
leverage the learning it had and then fine-tune the
classifier portion. The fully connected layers are
redefined to align with our 10-class classifier, also
added some dropouts to reduce the over-fitting
changes, and used the ReLU function to add the
non-linearity. The size is reduced from 512 to 256,
256 to 128, and so on until it is reduced to 10
(classes to predict).
 When we compare this performance with the
CNN, it has been evident that this transfer learning
has enhanced accuracy and reduced loss with less
overfitting. The CNN has achieved a test accuracy of
0.5223 while the VGG-16 has achieved an accuracy
of 0.6993 with data augmentation and 0.76 without
data augmentation. Adding the ReLU and dropout at
each layer, helped the model to achieve higher
accuracy with no overfitting.

VGG16 Architecture for transfer learning

NOTE:
I. With Augmentation: VGG16 implemented with
Data Augmentation like image rotations in the
training set.

II. Without/No Augmentation: VGG16 was
implemented without any Data Augmentation
techniques.

The below three plots show the accuracy and loss by
epoch plot, confusion matrix, and the classification
report for VGG16 (with augmented data). From the
below graphs, we can say that the model had a
significant amount of learning and is able to classify the
images with a pretty good amount of accuracy.

The below three plots show the accuracy and loss by
epoch plot, confusion matrix, and classification report
for VGG16 (without augmented data). The VGG(with
no Augmentation) has learned the country patterns well
compared the VGG(with Augmentation)

We also compared implementations with GoogleNet,
which had 0.42702 balanced accuracy and Resnet50
which had 0.50488 balanced accuracy. All 3 had the
same layers added to their base models, though the
VGG models later added dropout layers
intermittently when they were clearly selected as the
best model to focus on.
 ResNet failed to classify any pop or rock
samples correctly, while GoogleNet failed to classify
any blues samples correctly. ResNet did fairly well
with classical, country, disco and jazz, while
GoogleNet only did well with classical and jazz,
though it did a little better with jazz than ResNet.

GoogleNet reached stopping criteria in 17 epochs
whereas Resnet reached in 16 epochs.
The losses and accuracies are remarkably similar for
training and validation, unlike the MLP models
looked at below.

F. Multi-Layer Perceptrons (MLP)

The dataset used for MLP analysis was from
Project 2, where we extracted Mel-Frequency Cepstral
Coefficients (MFCCs) to capture timbral and spectral
qualities, Chroma Features for musical pitches, Spectral
Features for texture and frequency content, Rhythm
Features for tempo and beat onset strength, and
Zero-Crossing Rate for the rate of sign changes in the
waveform. The mean of large vectors and matrices was
taken for feature reduction and Principal Component
Analysis was applied, taking only PCAs that explained
the top 95% of the data.
 The following template was used to train the
Project 2 features.

The testing accuracy was not recorded for the first run,
however, the training accuracy for a hidden size of 64
and 100 epochs was only 53%. Adding another hidden
layer of width 48 with tanh activation increased training
accuracy from 53% to 72%. However, at this point, we
realized it was more important to look at Testing
accuracy, which was 0.52222 for the first modification.
From here on out, all accuracies reported in this section
will be test accuracy.
 One change made from the first modification
was altering the tanh layer to width 64. This moderately
improved accuracy to .54444. Another change to the 64,
48 width first modification was to make both layers Relu
activations. Accuracy took a step back at .48888.

Recognizing that a mix of activation functions
and greater widths had resulted in the highest accuracy, a
third layer was added. With a first layer of 64 using relu,
second 96 using tanh, and third 64 using relu again,
accuracy reached .51111.
 To test if perhaps the gains had simply come
from the use of tanh and not from a mixture, all three

layers were changed to tanh, but once again accuracy
took a step back to .46666.
 Maintaining the rest of the parameters, the
middle layer was reduced to be equal to the outer layers
at 64 and accuracy improved to .48888.

Attempting to reduce the middle layer to 48 took
a minor step back to .47777. Using this “hourglass”
shape on a tanh-relu-tanh layer order increased accuracy
to .5.

Setting all three layers back to 64 width,
accuracy improved to .52222. Lowering all three to 48
drastically reduced accuracy to .45555.

Increasing width of all three layers increased
accuracy, until no difference was found between 128
and 256 at .54444 again.

Due to an error, we tested balanced accuracy for
the alteration of using hinge loss as an activation
function at 512 width for all three layers. Whereas the
256 Cross entropy had balanced accuracy of .48310, the
512 Hinge Loss had balanced accuracy of 0.59896. We
only realized the day of the deadline the reason for the
bump in accuracy was more due to the extra width than
the choice of cost function, as when we adjusted cross
entropy to 512 width layers, balanced accuracy rose to
0.54732. Kullback Leibler had a balanced accuracy of
.54256.

As the discrepancy in accuracies per width
didn’t appear with the automatically generated test_acc,
we came away with the false conclusion that cost
function was the parameter that had the most effect on
accuracy. In future studies, we would like to examine
why the value it returns is different from balanced
accuracy using the same testing_loader, and if it
continues to be an unreliable measure, we will use
balanced accuracy through the entire process instead.

Below are our comparisons for the three cost
functions, Cross_Entropy has been corrected to use the
512 width layers, and all three share all other parameters,
including tanh-relu-tanh order of activation functions.

Hinge Loss and Kullback Leibler both perfectly
classified all 9 classical samples. Kullback
Leibler and Hinge Loss also didn’t misclassify
any samples of metal, though Hinge loss
gained much of its separation in accuracy from
the other two by not misclassifying any samples
as pop and by classifying 7/9 hip hop samples.
Cross Entropy made up its lost ground on
classical misclassification and over-classifying
samples as metal by performing much better
than Kullback Leibler on disco, which was the

worst genre classification out of all 3 models.
Overall Kullback Leibler had the greatest
variance in classifying-ability per genre, Cross
entropy and Hinge Loss were pretty well
rounded, but Hinge Loss had the highest highs.

Above are the three models loss and accuracy

curves for training and validation. Early stopping criteria
was reached when validation accuracy failed to improve
after 5 epochs. This took 12 epochs for Hinge Loss, 25

(maximum) for Cross Entropy, and just 9 for Kullback
Leibler. Kullback Leibler had the steepest decline in loss
for training data, and Hinge Loss had the steepest
increase in training accuracy. Validation accuracies and
losses all pretty much followed training curves, albeit
more jaggedly and overall closer to a 0 slope.

III. Experiments

A. Balanced Accuracy

The below graph shows the balanced

accuracy across different neural net models. Vgg
(with Augmentation) has the highest balanced
accuracy while Googlenet has the lowest. Vgg16 has
done great work in generalizing the data.

B. Time to Converge

This talks about the take taken by the
algorithms to converge.

The below graph shows that the Vgg (with
Augmentation) has taken more time to converge
while MLP(with three different losses) has taken
very less time to converge. MLPs are very fast in
training the model.

C. Prediction time
This talks about the time taken by the model

to predict the inputs.
The below graph shows that, again the

MLPs are leading the way in predicting the outputs
quickly. On the other had, the VGG16 is taking lot
of time compared to other models in the graph.

E. Kaggle submission

 The below graph shows the score achieved
on Kaggle with each model.
 Vgg has the highest Kaggle score, while the
ResNet is the lowest in the graph.

IV. Conclusion
In conclusion, this project was able to show

that the CNNs and VGG-16, are indeed very
powerful solutions for spectrogram audio
classification. The VGG-16 is especially held
slightly higher ground with more learning and
accuracy. This study shows the importance of
effective data preprocessing.

Our top Kaggle submission was Vgg (No
Augmentation) with 71%. This represented a
significant jump over our Logistic Regression final

submission with 57%. Incidentally, our top MLP
model, with Cross Entropy scored 55%, suggesting
that the methods used in the previous project may
have a maximum correlation in the high 50- low 60
percentages. If we were to pursue this project, it
seems a Transfer learning model is the best
approach, given both its accuracy and advantage of
extensive training.

	Project 3: Neural Networks

