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In this project, we once again performed audio 
classification in two data modalities. The features 
extracted from Project 2, and images of spectral 
frequencies over time. We created a Multi-Layer 
Perceptron model for the former and utilized a 
Convolutional Neural Network and Transfer 
Learning on the latter. Our comparisons within 
each learning method and between each one 
follow with regard to performance and accuracy. 
 

I. Introduction 
 In the project, we are tasked with using 
Multi-Layer Perceptrons (MLPs), convolutional 
neural networks (CNNs), and Transfer Learning. 
 For our extracted Project 2 features, we 
employ MLPs, for image classification, we employ 
CNNs, which are particularly adept at recognizing 
patterns in image data. Additionally, we us transfer 
learning by adapting the VGG-16, GoogleNet and 
Resnet models, pre-trained neural networks for 
image classification tasks.  
 

II. Design and Implementation 
 

A. Data Conversion 
 

We transformed the raw audio files into 
spectral images in an RGB colormap. These are 
visual representations of spectral frequencies in a 
sound over time. Applied normalization, such that 
the loudest point will reach +1 or -1, and all other 
points are scaled accordingly, in proportion. This 
ensures that the output signal utilizes the entire 
available dynamic range, and helps in retaining the 
audio quality while enhancing the performance of 
the following processing stages. To translate the 
audio signals from the time domain to the frequency 
domain, we applied the Short-Time Fourier 
Transform (STFT). In this transformation, we chose 
the framesize as 2048 and hopsize as 512, which 
play a very crucial role in maintaining the window 
size and successive window overlaps that directly 

affects the image resolution. Then this is converted 
to the log scale which helps to compress a wide 
range of sound intensities onto a scale closer to the 
range of human auditory perception. Each 
spectrogram is plotted without any axes to make sure 
we get clean images for feeding into neural 
networks. These images are saved in RGB format 
for better pattern recognition with the neural 
networks. 

 
 

Log spectrogram of a Rock music file 

 
 

B. Data Splitting 
 
 We used an 80-20 split on the data. 80% is 
allocated to training, and 20% goes to validation and 
testing in equal parts. We followed the same strategy 
in all the neural networks. There is no overlap of 
data between the splits. 

Data Splitting part 

 
 

C. Data Augmentation 
 
 Random rotation of images by 15 degrees 
was applied to the training set data. This increased 
the diversity of the training set by applying random 
transformations to the original images. The strategy 



 

prevents the model from overfitting and increases its 
ability to generalize new data. 

Data Augmentation part 

 
 

D. Convolutional Neural Network (CNN) 
 
 The CNN architecture, ConvolNeuNet has been 
designed to classify spectral images of music files into 
the genre to which it belong. This model has 3 
convolutional layers, which increases the number of 
filters from 32 to 96. Each convolutional layer used a 
3*3 sized kernel, stride of 1, and padding of 1. ReLU is 
applied throughout the convolutional layers for 
non-linearity. Max pooling is applied post ReLU in each 
convolutional layer of size 2*2, which reduces the 
computational load by enhancing the detection of 
important features.  
 

After the convolution, the layers are flattened 
i.e., Fully connected layers are formed. This includes a 
series of layers that reduce in size, from 512 to 10 
(number of classes for classification). Also some dropout 
layers, and ReLU functions are applied between these 
dense fully connected layers for better and faster 
classifications.  
 
We have used the default pytorch lightning for training 
the CNN, which reduced the complexity of training 
loops and improved the reproducibility. We have used 
Adam optimizer with a learning rate of 0.001 for 
optimizing the weights in the network and learning 
better. This will help us to reach the global maximum. 

 
 
 
 
 
 
 
 
 
 
 
 

CNN Architecture 

 
 

We have used ‘ReduceLROnPlateau’, a 
learning rate scheduler, which is useful in adjusting the 
learning rate by reducing it by a factor of 0.1 if there is 
no improvement seen in the last 3 epochs. This is quite a 
useful technique in the coming stages of training for 
better learning and classification by the network by 
reducing the loss. 

Learning scheduler part 

 
 

We have implemented early stopping of the 
algorithm to ensure efficient training. This mechanism 
will stop the training if there is no improvement in the 
accuracy in the last 5 epochs. This is very useful in 
saving the memory of computational resources and 
helping the model from degrading. 

Early stopping part 

 
Initially, we tested with 5-fold data preparation, each 
fold having an 80-20 split but that resulted in ending up 
with 0.8023 test accuracy which gave a balanced 
accuracy of 0.4634. This clearly says that it is 
overfitting. 
 
After we did the 80-20 split with 20 epochs, a Dropout 
of 0.5, and a learning rate of 0.001, gave the below 
accuracy of 0.4600. The below plot represents the 
performance of the CNN based on train accuracy, test 



 

accuracy, train loss, and test loss. It is evident that the 
model is learning and trying to classify the image 
properly. 

 
 
The below confusion matrix shows that CNN is 
able to classify classical, country, jazz, metal, 
and pop easily but it is struggling to classify the 
remaining genres correctly. We can also see 
that it is more struggling to classify the blues 
and rock genres.  

 

 
E. Transfer learning 

 
In transfer learning, we chose 

spectrogram-based classification. They represent 
audio signals with frequency and time information, 
which is very important for distinguishing the audio 
files. These files are very useful for convolutional 
neural networks, in finding patterns and classifying 
the images. 

VGG-16 is a very well-known 
deep-learning network for classifying images with 
high accuracy.  The architecture of this network is 
simple and yet captures the effective patterns for 
image classification, which is evident in our 
experiment on this network. VGG is initially 
pre-trained on an Image-net dataset, which has a 
very diverse set of images. To use this for our task, 
we need to freeze the convolutional layers to 
leverage the learning it had and then fine-tune the 
classifier portion. The fully connected layers are 
redefined to align with our 10-class classifier, also 
added some dropouts to reduce the over-fitting 
changes, and used the ReLU function to add the 
non-linearity. The size is reduced from 512 to 256, 
256 to 128, and so on until it is reduced to 10 
(classes to predict). 
 When we compare this performance with the 
CNN, it has been evident that this transfer learning 
has enhanced accuracy and reduced loss with less 
overfitting. The CNN has achieved a test accuracy of 
0.5223 while the VGG-16 has achieved an accuracy 
of 0.6993 with data augmentation and 0.76 without 
data augmentation. Adding the ReLU and dropout at 
each layer, helped the model to achieve higher 
accuracy with no overfitting. 
 



 

VGG16 Architecture for transfer learning 

 
 
NOTE:  
I. With Augmentation: VGG16 implemented with 
Data Augmentation like image rotations in the 
training set. 
 
II. Without/No Augmentation: VGG16 was 
implemented without any  Data Augmentation 
techniques. 
 
The below three plots show the accuracy and loss by 
epoch plot, confusion matrix, and the classification 
report for VGG16 (with augmented data). From the 
below graphs, we can say that the model had a 
significant amount of learning and is able to classify the 
images with a pretty good amount of accuracy. 

 

 

 
 
The below three plots show the accuracy and loss by 
epoch plot, confusion matrix, and classification report 
for VGG16 (without augmented data). The VGG(with 
no Augmentation) has learned the country patterns well 
compared the VGG(with Augmentation) 

 
 



 

 
 

 
 
We also compared implementations with GoogleNet, 
which had 0.42702 balanced accuracy and Resnet50 
which had 0.50488 balanced accuracy. All 3 had the 
same layers added to their base models, though the 
VGG models later added dropout layers 
intermittently when they were clearly selected as the 
best model to focus on.  
 ResNet failed to classify any pop or rock 
samples correctly, while GoogleNet failed to classify 
any blues samples correctly. ResNet did fairly well 
with classical, country, disco and jazz, while 
GoogleNet only did well with classical and jazz, 
though it did a little better with jazz than ResNet. 

 
 

 
 
 

 



 

 
GoogleNet reached stopping criteria in 17 epochs 
whereas Resnet reached in 16 epochs.  
The losses and accuracies are remarkably similar for 
training and validation, unlike the MLP models 
looked at below. 

 
 
 
 
 
 

 
 
 
 

 
F. Multi-Layer Perceptrons (MLP) 

The dataset used for MLP analysis was from 
Project 2, where we extracted Mel-Frequency Cepstral 
Coefficients (MFCCs) to capture timbral and spectral 
qualities, Chroma Features for musical pitches, Spectral 
Features for texture and frequency content, Rhythm 
Features for tempo and beat onset strength, and 
Zero-Crossing Rate for the rate of sign changes in the 
waveform. The mean of large vectors and matrices was 
taken for feature reduction and Principal Component 
Analysis was applied, taking only PCAs that explained 
the top 95% of the data.  
 The following template was used to train the 
Project 2 features. 

 
The testing accuracy was not recorded for the first run, 
however, the training accuracy for a hidden size of 64 
and 100 epochs was only 53%. Adding another hidden 
layer of width 48 with tanh activation increased training 
accuracy from 53% to 72%. However, at this point, we 
realized it was more important to look at Testing 
accuracy, which was 0.52222 for the first modification. 
From here on out, all accuracies reported in this section 
will be test accuracy. 
 One change made from the first modification 
was altering the tanh layer to width 64. This moderately 
improved accuracy to .54444. Another change to the 64, 
48 width first modification was to make both layers Relu 
activations. Accuracy took a step back at .48888.  

Recognizing that a mix of activation functions 
and greater widths had resulted in the highest accuracy, a 
third layer was added. With a first layer of 64 using relu, 
second 96 using tanh, and third 64 using relu again, 
accuracy reached .51111.  
 To test if perhaps the gains had simply come 
from the use of tanh and not from a mixture, all three 



 

layers were changed to tanh, but once again accuracy 
took a step back to .46666.  
 Maintaining the rest of the parameters, the 
middle layer was reduced to be equal to the outer layers 
at 64 and accuracy improved to .48888.  

Attempting to reduce the middle layer to 48 took 
a minor step back to .47777. Using this “hourglass” 
shape on a tanh-relu-tanh layer order increased accuracy 
to .5. 

Setting all three layers back to 64 width, 
accuracy improved to .52222. Lowering all three to 48 
drastically reduced accuracy to .45555.  

Increasing width of all three layers increased 
accuracy, until no difference was found between 128  
and 256 at .54444 again.  

Due to an error, we tested balanced accuracy for 
the alteration of using hinge loss as an activation 
function at 512 width for all three layers. Whereas the 
256 Cross entropy had balanced accuracy of .48310, the 
512 Hinge Loss had balanced accuracy of 0.59896. We 
only realized the day of the deadline the reason for the 
bump in accuracy was more due to the extra width than 
the choice of cost function, as when we adjusted cross 
entropy to 512 width layers, balanced accuracy rose to 
0.54732. Kullback Leibler had a balanced accuracy of 
.54256. 

As the discrepancy in accuracies per width 
didn’t appear with the automatically generated test_acc, 
we came away with the false conclusion that cost 
function was the parameter that had the most effect on 
accuracy. In future studies, we would like to examine 
why the value it returns is different from balanced 
accuracy using the same testing_loader, and if it 
continues to be an unreliable measure, we will use 
balanced accuracy through the entire process instead.  

Below are our comparisons for the three cost 
functions, Cross_Entropy has been corrected to use the 
512 width layers, and all three share all other parameters, 
including tanh-relu-tanh order of activation functions. 
 

 
 

 
 
 

 
 



 

 

 

 
Hinge Loss and Kullback Leibler both perfectly 
classified all 9 classical samples. Kullback 
Leibler and Hinge Loss also didn’t misclassify 
any samples of metal, though Hinge loss 
gained much of its separation in accuracy from 
the other two by not misclassifying any samples 
as pop and by classifying 7/9 hip hop samples. 
Cross Entropy made up its lost ground on 
classical misclassification and over-classifying 
samples as metal by performing much better 
than Kullback Leibler on disco, which was the 

worst genre classification out of all 3 models. 
Overall Kullback Leibler had the greatest 
variance in classifying-ability per genre, Cross 
entropy and Hinge Loss were pretty well 
rounded, but Hinge Loss had the highest highs.

 
Above are the three models loss and accuracy 

curves for training and validation. Early stopping criteria 
was reached when validation accuracy failed to improve 
after 5 epochs. This took 12 epochs for Hinge Loss, 25 



 

(maximum) for Cross Entropy, and just 9 for Kullback 
Leibler. Kullback Leibler had the steepest decline in loss 
for training data, and Hinge Loss had the steepest 
increase in training accuracy. Validation accuracies and 
losses all pretty much followed training curves, albeit 
more jaggedly and overall closer to a 0 slope. 

 
III. Experiments 

 
A. Balanced Accuracy 

 
The below graph shows the balanced 

accuracy across different neural net models. Vgg 
(with Augmentation) has the highest balanced 
accuracy while Googlenet has the lowest. Vgg16 has 
done great work in generalizing the data. 
 

 
 
 

B. Time to Converge 
 

This talks about the take taken by the 
algorithms to converge. 

The below graph shows that the Vgg (with 
Augmentation) has taken more time to converge 
while MLP(with three different losses) has taken 
very less time to converge. MLPs are very fast in 
training the model. 

 

 

C. Prediction time 
This talks about the time taken by the model 

to predict the inputs. 
The below graph shows that, again the 

MLPs are leading the way in predicting the outputs 
quickly. On the other had, the VGG16 is taking lot 
of time compared to other models in the graph. 
 

 
 

 
E. Kaggle submission 

  The below graph shows the score achieved 
on Kaggle with each model. 
 Vgg has the highest Kaggle score, while the 
ResNet is the lowest in the graph. 

 
 

IV. Conclusion 
In conclusion, this project was able to show 

that the CNNs and VGG-16, are indeed very 
powerful solutions for spectrogram audio 
classification. The VGG-16 is especially held 
slightly higher ground with more learning and 
accuracy. This study shows the importance of 
effective data preprocessing. 

Our top Kaggle submission was Vgg (No 
Augmentation) with 71%. This represented a 
significant jump over our Logistic Regression final 



 

submission with 57%. Incidentally, our top MLP 
model, with Cross Entropy scored 55%, suggesting 
that the methods used in the previous project may 
have a maximum correlation in the high 50- low 60 
percentages. If we were to pursue this project, it 
seems a Transfer learning model is the best 
approach, given both its accuracy and advantage of 
extensive training.  
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