
CS 544/444: Introduction to Cybersecurity

Spring 2025

Afsah Anwar, afsah@unm.edu, Farris #2120.
TA: Hamim Md Adal, hmdadal@unm.edu, Farris #2150.

Network Security Lab

Guidelines

• Upload on Canvas under Network Security Lab.

• Late submissions will NOT be accepted.

• Students may collaborate among themselves to complete the homeworks/labs.

• Please follow the steps carefully and attach screenshots for each step as evidence.

Question 1: Getting Started with Network Mapping (10 pts)

Network mapping is the process of discovering all endpoints connected to a network. In penetra-
tion testing, it is used to identify devices and identify what ports and services a certain device
is running. For this reason, it is important to be able to identify and map your network to
understand what level of exposure you have. In this lab section, we will learn how to identify
the devices running in a network using a popular network mapping tool, nmap.

To run the nmap (aka network mapper) tool, you will need a virtual machine running Kali Linux
(See this link). After following the guidelines, just open a terminal, type ”nmap –help” and you
should see an output like Figure 1.

Question 2: Identifying devices on local network (40 pts)

We can use nmap to identify what devices are connected to our local network. To achieve this,
perform the following steps:

https://unmm-my.sharepoint.com/:f:/g/personal/esobrados720_unm_edu/EkHq6RbdP8hJhsnUn0JzJX0BW56BGry_16ektRDQuPzAwg?e=sykPRz

Figure 1: nmap help menu

1. Get your local network in CIDR format. (e.g. 192.168.1.1/24). You should get the net-
work address from your original computer, not the VM. Hint: In Linux/Mac run ifconfig
command, on Windows run ipconfig on the terminal.

2. On Kali, run the following command ”sudo nmap -sn 192.168.1.1/24”. Don’t forget to
replace the IP and subnet mask with yours. If your network supports many devices (e.g.
/17 or /24) and is taking too long to scan, try setting up a mobile hotspot and connect
one or two more devices to it. We can see an example result in Figure 2.

Figure 2: nmap scan for internal network

3. How many devices are up in your network? Can you identify any device?

4. Now target a specific IP, for this exercise use your original machine IP. See Figure 3,
replicate, and answer: What is each flag doing? Can you see any open ports? If yes, what
service is it running? Don’t forget to replace the IP with your computer one.

5. Now, do some research and find a way to scan a specific port and get the service version
of those ports. Hint: you can go to https://nmap.org/book/man.html or run man nmap
to see the command’s manual page.

6. Why is it important to not have any unwanted ports or services open?

7. Can we do port scanning to whatever device we want? What are the problems or legal
issues about doing this?

https://nmap.org/book/man.html

Figure 3: nmap scan for specific IP

Question 3: Packet sniffing and Spoofing (15 pts)

Packet sniffing and spoofing are two important concepts in network security; they are two major
threats in network communication. Being able to understand these two threats is essential for
understanding security measures in networking. In this lab we will use a python module to sniff
and spoof network packets.

To set up the packet sniffing and spoofing Lab do the following steps:

1. Install docker on the Kali Linux virtual machine by running the following commands:

sudo apt−get update
sudo apt−get upgrade
sudo apt−get i n s t a l l docker . i o docker−compose

2. Download the lab zip file from:
https://canvas.unm.edu/files/18780965/download?download_frd=1 or on canvas go
to files → Labsetup.zip.

https://canvas.unm.edu/files/18780965/download?download_frd=1

3. Decompress the zip file and enter the directory on the terminal.

4. Run the following command:

sudo docker−compose up −d

5. The previous command will set up 3 docker containers. To understand better what a
container is you can go to the following page: https://www.docker.com/resources/

what-container/.

6. Now that you have the containers running, you can see each container name with its
corresponding ID with the following command (see Figure 4):

Figure 4: Docker container IDs and names

sudo docker ps −−format ” {{ . ID}} {{ .Names}}”

7. For this lab, we will need to execute commands within each container, to be able to interact
with a shell within each container run the following command:

sudo docker exec − i t ID / bin /bash

Don’t forget to replace ID with the corresponding container ID.

In this lab, we will use three containers that are connected to the same LAN. Figure 5 depicts
the lab environment. We will do all the attacks on the attacker container while using the other
containers as the user machines.

• Attach an image of your lab architecture successfully working.

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/

Question 4: Using Scapy to Sniff and Spoof Packets (35 pts)

Figure 5: Lab architecture using three docker containers

Many tools can be used to do sniffing and spoofing, but most of them only provide fixed func-
tionalities. Scapy is different: it can be used not only as a tool, but also as a building block to
construct other sniffing and spoofing tools, i.e., we can integrate the Scapy functionalities into
our own program. In this set of tasks, we will use Scapy for each task. To use Scapy, we can write
a Python program, and then execute this program using Python. See the following example. We
should run Python using the root privilege because the privilege is required for spoofing packets.

The following command is a basic example of a Python code using the Scapy library to get IP
information.

#!/ usr / bin /env python3
from scapy . a l l import ∗

a=IP ()
a . show ()

Question 4.1 Sniffing Packets

Wireshark is the most popular sniffing tool, and it is easy to use. However, it is difficult to use
Wireshark as a building block to construct other tools. We will use Scapy for that purpose. The
objective of this task is to learn how to use Scapy to do packet sniffing in Python programs. A
sample code is provided in the following:

#!/ usr / bin /env python3
from scapy . a l l import ∗
de f p r i n t p k t (pkt) :

pkt . show ()

pkt=s n i f f (i f a c e =’br−c93733e9f913 ’ , f i l t e r =’icmp ’ , prn=p r i n t p k t)

The code above will sniff the packets on the br-c93733e9f913 interface. Change the interface
name to the one corresponding to the network of the lab.

1. In the above program, for each captured packet, the callback function print pkt() will be
invoked; this function will print out some of the information about the packet. Run the
program with the root privilege and demonstrate that you can indeed capture packets.
After that, run the program again, but without using the root privilege; describe and
explain your observations. There is a user called seed which you can switch to test the
non-privileged.

2. Usually, when we sniff packets, we are only interested certain types of packets. We can
do that by setting filters in sniffing. Scapy’s filter uses the BPF(Berkeley Packet Filter)
syntax; you can find the BPF manual on the Internet. Please set the following filters and
demonstrate your sniffer program again (each filter should be set separately).

• Capture only the ICMP packet.

• Capture any TCP packet that comes from a particular IP and with a destination port
number 23.

• Capture packets comes from or to go to a particular subnet. You can pick any subnet,
such as 128.230.0.0/16; you should not pick the subnet that your VM is attached to.

Question 4.2 Spoofing ICMP packets

As a packet spoofing tool, Scapy allows us to set the fields of IP packets to arbitrary values. The
objective of this task is to spoof IP packets with an arbitrary source IP address. We will spoof
ICMP echo request packets, and send them to another VM on the same network. We will use
Wireshark to observe whether our request will be accepted by the receiver. If it is accepted, an

echo reply packet will be sent to the spoofed IP address. The following code shows and example
of how to spoof an ICMP packet.

#!/ usr / bin /env python3
from scapy . a l l import ∗
a = IP ()
a . dst = ’ 1 0 . 0 . 2 . 3 ’
b = ICMP()
p = a/b
send (p)

In the code above, first we create an IP object from the IP class; a class attribute is defined for
each IP header field. We can use ls(a) or ls(IP) to see all the attribute names/values. We can
also use a.show() and IP.show() to do the same. Then we set the destination IP address field. If
a field is not set the default value will be used.

>>> l s (a)
v e r s i o n : B i tF i e ld (4 b i t s) = 4 (4)
i h l : B i tF i e ld (4 b i t s) = None (None)
to s : XByteField = 0 (0)
l en : Shor tF ie ld = None (None)
id : Shor tF i e ld = 1 (1)
f l a g s : F l ag sF i e ld (3 b i t s) = <Flag 0 ()> (<Flag 0 ()>)
f r a g : B i tF i e ld (13 b i t s) = 0 (0)
t t l : ByteFie ld = 64 (64)
proto : ByteEnumField = 0 (0)
chksum : XShortField = None (None)
s r c : SourceIPFie ld = ’ 1 2 7 . 0 . 0 . 1 ’ (None)
dst : DestIPFie ld = ’ 1 2 7 . 0 . 0 . 1 ’ (None)
opt ions : Packe tL i s tF i e ld = [] ([])

Then we create an ICMP object, stacking a and b together to form a new object. Finally, the
new object created is sent with the send() function.

• Use Wireshark and intercept the traffic going using the interface starting with ”br-”.

• In the attacker machine, create the script to spoof an ICMP packet using as src IP the
Host A and target IP Host B.

• Demonstrate that the ICMP packet was successfully spoofed.

Question 4.3: Traceroute

The objective of this task is to use Scapy to estimate the distance, in terms of a number of
routers, between your VM and a selected destination. This is basically what is implemented by
the traceroute tool. In this task, we will write our own tool. The idea is quite straightforward:
just send a packet (any type) to the destination, with its Time-To-Live (TTL) field set to 1 first.
This packet will be dropped by the first router, which will send us an ICMP error message, telling
us that the time-to-live has exceeded. That is how we get the IP address of the first router. We
then increase our TTL to 2, send out another packet, and get the IP of the second router. We
will repeat this procedure until our packet finally reaches its destination. It should be noted that
this experiment only gets an estimated result, because in theory, not all these packets take the
same route (but in practice, they may within a short period of time). The code in the following
shows one round in the procedure.

a = IP ()
a . dst = ’ 1 . 2 . 3 . 4 ’
a . t t l = 3
b = ICMP()
send (a/b)

• Write a Python code to automate the procedure and get the traceroute automatically.
Attach the code as a separate file from the submission.

