
Homework 2 CS558 Gabriel Urbai4s
101668562

2.1 Polymorphic binary trees

a) The Mul4Tree has two type constructors, MLeaf and MNode.
MLeafs are of type a, MNodes are of type b and have two subtrees that recurse the structure.
We derive show for tes4ng purposes.
data Mul4Tree a b = MLeaf a

 | MNode b (Mul4Tree a b) (Mul4Tree a b) deriving Show

Tes4ng:
I created two Mul4Trees to test, myTree and lakinTree.

myTree goes to a depth of 3 on the leS side and 2 on the right side. It has Strings at the nodes to
label their orienta4on in rela4on to the other nodes, an “L” is added to the string of a leS child,
an “R” to the string of a right child. It has Ints at the leafs to emphasize different types at nodes
and leafs.

myTree :: Mul4Tree Int String
myTree = MNode "Top" (MNode "L" (MNode "LL" (MLeaf 1) (MLeaf 2)) (MLeaf 3)) (MNode "R"
(MLeaf 4) (MLeaf 5))

lakinTree is the example given for mirror in part c). It goes to depth of 1 on the leS and 2 on the
right side. It has Chars at the leafs and Ints at the nodes.

lakinTree :: Mul4Tree Char Int
lakinTree = (MNode 1 (MLeaf 'A') (MNode 2 (MLeaf 'B') (MLeaf 'C')))

Both Mul4Trees were tested with a simple print func4on.

b) For the func4on declara4on, mul4Fold takes two func4on arguments, one which operates on
the expressions stored in the leafs, (a -> c), the other which operates on the expression in the
Nodes and their subtrees, (b -> c -> c -> c). It also takes the Mul4Tree it operates on, (Mul4Tree
a b), and returns a single expression of type c.

mul4Fold :: (a -> c) -> (b -> c -> c -> c) -> (Mul4Tree a b) -> c

For the func4on defini4on, there are two pacerns to match, where the Mul4Tree is a MLeaf and
where it is a MNode.

For the leaf case, the func4on simply takes the expression stored at the MNode and applies the
fLeaf func4on to the expression.

mul4Fold fLeaf fNode (MLeaf x) = fLeaf x

For the node case, we apply the fNode func4on to the expression stored at the node and
recursive calls to mul4Fold on both subtrees. When the subtrees are both MLeafs, they will
return expressions of type c from the fLeaf func4on. Then fNode will take the expression at the
node of type b and the expressions of type c from the mul4Fold recursive calls and return a
single expression of type c, which itself may be the return of a recursive call up to a parent
MNode, or if we’re at the root, it is the final expression returned.

mul4Fold fLeaf fNode (MNode y t1 t2) = fNode y (mul4Fold fLeaf fNode t1) (mul4Fold fLeaf
fNode t2)

Tes4ng: As I had trees with different types at the leafs and nodes, I needed different fNode and
fLeaf func4ons to test them with mul4Fold. For myTree, my fLeaf func4on mul4plied the
expression at the Leaf by itself to do something unique to numbers, but as it had to return type
c that was compa4ble with Strings, I applied show to the result to return a string of the result.
myTree already had a String expression stored at the node, so no transforma4on was required
to turn it to type c. I just appended the String returned by the leS child to the String at the
Node and appended the string returned by the right child to that string for my fNode func4on.

myTree = MNode "Top" (MNode "L" (MNode "LL" (MLeaf 1) (MLeaf 2)) (MLeaf 3)) (MNode "R"
(MLeaf 4) (MLeaf 5))

mul4Fold (\x -> show(x*x)) (\y t1Str t2Str-> y ++ t1Str ++ t2Str) myTree =
"TopLLL149R1625"

mul4Fold at the first return appended show(3*3)=[‘9’] to “LL” ++ mul4Fold MLeaf 1 mul4Fold
MLeaf 2 = “LL”++”1”++”4”++”9”, At the next level, “L”++”LL14” ++”9”. On The Right Side,
“R”++show(4*4)++show(5*5) = “R1625”. At the Top Level, “Top”++ “LLL149”++ “R1625” =
"TopLLL149R1625".

I realized that myTree was only evalua4ng (c->-c->c->c) as the nodes already had expressions of
type String and that was the return type for the whole mul4Fold func4on implementa4on, so I
also tested lakinTree.

lakinTree =
MNode 1 (MLeaf 'A') (MNode 2 (MLeaf 'B') (MLeaf 'C'))

mul4Fold (\x -> [x]) (\y t1Str t2Str-> (show y) ++ t1Str ++ t2Str) lakinTree =
"1A2BC"

With lakinTree having chars at the leafs and Ints at the Nodes, I decided the unique third return
type should be Strings (or lists of chars). So my anonymous func4on for fLeaf took the Char at
the leaf and returned a singleton list of that Char (a String). My anonymous func4on for fNode
took the Int at the node and applied show to it to return a String of the number. Then it

appended the Strings returned by the subtrees of the node (already explained in depth for
myTree). The LeS subtree returned “A”, the right subtree returned “2BC” so these appended to
the root of “1” returned a String of “1A2BC”

c) For the func4on declara4on mirror takes a Mul4Tree and returns a mirrored Mul4Tree
consis4ng of the same types

mirror :: (Mul4Tree a b) -> (Mul4Tree a b)

Because we are using mul4Fold to define mirror, we have to look at how mul4fold uses the
func4ons to determine what those func4ons should be.

When mul4Fold is applied to the expression at the leaf, it returns the fLeaf func4on applied to
that expression. We are trying to construct a new Mul4Tree to return, so given the expression at
the leaf, we create a new MLeaf of that expression.

When mul4Fold is applied to the expressions at the node, it returns the fNode func4on applied
to the expression at the node and the values returned by the recursive calls of mul4Fold on the
subTrees. Once again we are construc4ng a Mul4Tree, so we apply MNode to the expression at
the node, but we swap the posi4on of the subtrees in our call to build the mirrored version of
the tree. The recursive calls in Mul4Fold take care of the different instances where the subtrees
are leafs or nodes, so we don’t need to worry about that in mirrors defini4on. So we take in a
Mul4Tree , and run the func4on for reconstruc4ng leaves and for reconstruc4ng nodes with
mirrored children on that Mul4 Tree.

mirror mTree = mul4Fold (\x -> MLeaf x) (\y t1 t2 -> MNode y t2 t1) mTree

Tes4ng: I ran mirror on both myTree and the example given in the assignment, lakinTree.

On myTree, mirror produced a tree with the top node labeled the same as the input tree, then
on the leS child “R” instead of where it was the right child on the input tree. The Children of “R”
were leaves 5 and 4, and now the children should, going from leS to right, descend instead of
ascend. They do, as that por4on of the tree is finished, the right node is now “L”, its leS child is
MLeaf 3, its right child is “LL” and “LL” ’s children are now 2 on the leS and 1 on the right.

mirror myTree =
MNode "Top" (MNode "R" (MLeaf 5) (MLeaf 4)) (MNode "L" (MLeaf 3) (MNode "LL" (MLeaf 2)
(MLeaf 1)))

Mirro lakinTree also produced a mirrored tree, iden4cal to the expected output in the
assignment.

mirror lakinTree =
MNode 1 (MNode 2 (MLeaf 'C') (MLeaf 'B')) (MLeaf 'A')

2.2 Proving program proper4es

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * (product xs)

foldr:: (a->b->b) ->b -> [a] ->b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

Provide a formal proof that
product ns = foldr (\x -> \acc -> x * acc) 1 ns for all lists ns :: [Int], by induc4on on the structure
of lists.

Base case P([]):
Must show P([]) is product [] = foldr (\x -> \acc -> x * acc) 1 []
LHS = product [] = 1 (From the defini4on of product)
RHS = foldr (\x -> \acc -> x * acc) 1 [] = 1 (From the defini4on of foldr)
Hence LHS = 1 = RHS so done.

Induc4ve Case: ∀x::a. ∀ns::[a]. P(ns) => P (x:ns)
Must show P(ns) -> P (x:ns)
Assume Induc4ve Hypothesis P(ns) ie product ns = foldr (\x -> \acc -> x * acc) 1 ns
Use to show P(x:ns) ie product (x:ns) = foldr (\x -> \acc -> x * acc) 1 (x:ns)

RHS = foldr (\x -> \acc -> x * acc) 1 (x:ns)
 = (\x -> \acc -> x * acc) x (foldr (\x -> \acc -> x * acc) 1 ns) (From the defini4on of foldr)
 = (\x -> \acc -> x * acc) x (product ns) (Using the Induc4ve Hypothesis)
 = x * (product ns) (Simplify; Apply the anonymous func4on)
 = product (x:ns) (From the defini4on of product)
 = LHS
So RHS = LHS, so done!

Terminal Screenshot:

CS 558 Software Foundations, Fall 2022 Page 1 of 11

Mid-term examination #1 — given Tuesday 4th October

General instructions

Closed-book, closed-notes, closed-computer, in-class exam.

Time allowed: 75 minutes.

Total points available: 150 pts.

Answer in the spaces provided.

Your name (print):

I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.

Please sign and date:

CS 558 Software Foundations, Fall 2022 Page 2 of 11

1.1 Evaluation in Haskell (20 pts)

For each of the following Haskell expressions, indicate whether evaluation of the expression
either:

• reduces to a value (in which case, you must identify that value),

• fails to terminate, or

• raises a runtime error.

In each case, you must provide an explanation for your answer.

1. (5 pts) (\m -> \n -> n ‘div‘ m) 0

2. (5 pts) (\m -> \n -> n ‘div‘ m) 3 9

3. (5 pts) (\m -> \n -> n ‘div‘ m) 0 9

4. (5 pts) map (3*) (take 5 [1, 2..])

CS 558 Software Foundations, Fall 2022 Page 3 of 11

1.2 Tree operations in Haskell (50 pts)

Here is the definition of a Haskell type of generalized binary trees with exactly two sub-trees
per Node, with data values of type a stored in the Nodes and data values of type b stored in the
Leafs:

data GenTree a b = Leaf b

| Node a (GenTree a b) (GenTree a b) deriving Show

where the first and second arguments to Node represent the “left” and “right” sub-trees of that
node, respectively.

1. (10 pts) Write a Haskell function

leafMax :: Ord b => GenTree a b -> b

that returns the maximum value stored in any Leaf within the tree.

For example, let t :: GenTree Int Char be the Haskell value

Node 7 (Leaf ’J’) (Node 2 (Leaf ’Z’) (Leaf ’C’)).

Then, the expression leafMax t should evaluate to ’Z’.

CS 558 Software Foundations, Fall 2022 Page 4 of 11

2. (5 pts) Briefly explain the meaning of the Ord b constraint on the type in the previous
question and why it is necessary there.

CS 558 Software Foundations, Fall 2022 Page 5 of 11

3. (10 pts) Write a Haskell function

nodeMax :: Ord a => GenTree a b -> Maybe a

that returns the maximum value stored in any Node within the tree.

For example, with t defined as above, the expression nodeMax t should evaluate to Just 7.

CS 558 Software Foundations, Fall 2022 Page 6 of 11

4. (5 pts) Briefly explain why the use of a Maybe type for the output is necessary in your
answer to the previous question.

CS 558 Software Foundations, Fall 2022 Page 7 of 11

5. (15 pts) Write a Haskell function

depthFirst :: (GenTree a b) -> [Either a b]

that produces a list containing the values from the Leafs and Nodes in a depth-first fashion,
recording the value stored in each Node before visiting the left and right sub-trees of that
Node in that order.

For example, with t defined as above, the expression depthFirst t should evaluate to
[Left 7, Right ’J’, Left 2, Right ’Z’, Right ’C’].

CS 558 Software Foundations, Fall 2022 Page 8 of 11

6. (5 pts) Briefly explain why the use of an Either type in the output is necessary in your
answer to the previous question.

CS 558 Software Foundations, Fall 2022 Page 9 of 11

1.3 List operations in Haskell (40 pts)

1. (20 pts) Write a Haskell function

takeUntil :: (a -> Bool) -> [a] -> [a]

that takes a predicate p and a list as arguments and returns a list containing all elements
of the input list, in the same order, up until the first element x of the input list for which
p x evaluates to True. That element x should not be included in the resulting list. If p x

never evaluates to True then all of the elements of the input list should be included in the
output list.

For example, takeUntil (\n -> n ‘mod‘ 2 == 0) [1,3,5,7,2,4,6,7] should return the
list [1,3,5,7].

For full credit, make minimal use of any related Haskell library functions in your an-
swer.

CS 558 Software Foundations, Fall 2022 Page 10 of 11

2. (20 pts) Name and briefly explain the feature of Haskell evaluation means that Haskell
programs can manipulate infinite lists without necessarily looping forever.

Illustrate your answer using the expression: takeUntil (\n -> n > 11) [2, 4..]

CS 558 Software Foundations, Fall 2022 Page 11 of 11

1.4 Proving properties of Haskell programs (40 pts)

The product function in Haskell can be defined as follows:

product :: [Int] -> Int

product [] = 1

product (x:xs) = x * product xs

Prove, by induction on lists, that

foldr (*) 1 xs = product xs

for all lists xs :: [Int].

END OF EXAM

CS 558 Software Foundations, Fall 2022 Page 1 of 13

Mid-term examination #2 — given Thursday 17th November

General instructions

Closed-book, closed-notes, closed-computer, in-class exam.

Time allowed: 75 minutes.

Total points available: 150 pts.

Answer in the spaces provided.

Your name (print):

I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.

Please sign and date:

CS 558 Software Foundations, Fall 2022 Page 2 of 13

2.1 Typing judgments (40 pts)

1. (20 pts) Using the typing rules for the typed calculus of numbers and booleans, as defined
in Appendix A, identify the type T such that

pred
(
if iszero (succ 0) then false else succ 0

)
: T

holds, if such a type exists, by constructing a full typing derivation for this judgment.

If no such type exists, construct a partial derivation and explain where and why the
typing derivation fails.

CS 558 Software Foundations, Fall 2022 Page 3 of 13

2. (20 pts) Using the typing rules for the typed calculus of numbers and booleans, as defined
in Appendix A, identify the type T such that

iszero
(
if iszero (pred 0) then 0 else succ 0

)
: T

holds, if such a type exists, by constructing a full typing derivation for this judgment.

If no such type exists, construct a partial derivation and explain where and why the
typing derivation fails.

CS 558 Software Foundations, Fall 2022 Page 4 of 13

2.2 Evaluation judgments (40 pts)

1. (20 pts) Using the reduction rules for the typed calculus of numbers and booleans, as
defined in Appendix A, construct a full derivation for every step of evaluation of the
term

pred
(
if iszero (succ 0) then false else succ 0

)
.

When you have reduced the term to one that cannot be reduced further, identify whether
that term is a value or whether reduction is “stuck”.

For this question, you should attempt to reduce the term regardless of whether it is well-
typed or not.

CS 558 Software Foundations, Fall 2022 Page 5 of 13

2. (20 pts) Using the reduction rules for the typed calculus of numbers and booleans, as
defined in Appendix A, construct a full derivation for every step of evaluation of the
term

iszero
(
if iszero (pred 0) then 0 else succ 0

)
.

When you have reduced the term to one that cannot be reduced further, identify whether
that term is a value or whether reduction is “stuck”.

For this question, you should attempt to reduce the term regardless of whether it is well-
typed or not.

CS 558 Software Foundations, Fall 2022 Page 6 of 13

2.3 Implementing arithmetic in the untyped lambda-calculus (30 pts)

1. (5 pts) Write down definitions for the untyped lambda-terms corresponding to the Church
numerals c0, c1, c2, c3, and c4, which represent the natural numbers 0, 1, 2, 3, and 4, re-
spectively.

CS 558 Software Foundations, Fall 2022 Page 7 of 13

2. (10 pts) The untyped lambda-term succ that implements the successor function on Church
numerals can be defined as follows:

succ = λn. λs. λz. s (n s z)

Using this definition of succ, or otherwise, define an untyped lambda-term plus that takes
two Church numerals as arguments and returns the Church numeral corresponding to
their sum, i.e., (plus ci) cj should evaluate to ci+j.

CS 558 Software Foundations, Fall 2022 Page 8 of 13

3. (15 pts) Using your definition of plus from part 2, or otherwise, define an untyped lambda-
term times that takes two Church numerals as arguments and returns the Church numeral
corresponding to their product, i.e., (times ci) cj should evaluate to ci∗j.

CS 558 Software Foundations, Fall 2022 Page 9 of 13

2.4 Concepts in syntax and semantics of programming languages (40 pts)

Briefly explain the following concepts in the syntax and semantics of programming languages.
Illustrate each answer with an explanation of a simple example.

1. (10 pts) Syntax-directed schematic inference rules.

2. (10 pts) Full beta-reduction of untyped lambda-terms.

CS 558 Software Foundations, Fall 2022 Page 10 of 13

3. (20 pts) Type safety.

END OF EXAM

CS 558 Software Foundations, Fall 2022 Page 11 of 13

A Reference: the typed calculus of numbers and booleans

Syntax

Terms, t ::= true constant true
| false constant false
| if t then t else t conditional
| 0 constant zero
| succ t successor
| pred t predecessor
| iszero t zero test

Values, v ::= true true value
| false false value
| nv numeric value

Numeric values, nv ::= 0 zero value
| succ nv successor value

Types, T ::= Bool type of booleans
| Nat type of natural numbers

Evaluation Rules

if true then t2 else t3 −→ t2
(E-IFTRUE)

if false then t2 else t3 −→ t3
(E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-IF)

t1 −→ t′1
succ t1 −→ succ t′1

(E-SUCC)

CS 558 Software Foundations, Fall 2022 Page 12 of 13

pred 0 −→ 0
(E-PREDZERO)

pred (succ nv1) −→ nv1
(E-PREDSUCC)

t1 −→ t′1
pred t1 −→ pred t′1

(E-PRED)

iszero 0 −→ true
(E-ISZEROZERO)

iszero (succ nv1) −→ false
(E-ISZEROSUCC)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-ISZERO)

Typing Rules

true : Bool
(T-TRUE)

false : Bool
(T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

CS 558 Software Foundations, Fall 2022 Page 13 of 13

0 : Nat
(T-ZERO)

t : Nat
succ t : Nat

(T-SUCC)

t : Nat
pred t : Nat

(T-PRED)

t : Nat
iszero t : Bool

(T-ISZERO)

CS 558 Software Foundations, Fall 2022 Page 1 of 19

Final examination — given Tuesday 13th December

General instructions

Closed-book, closed-notes, closed-computer, in-class exam.

Time allowed: 120 minutes.

Total points available: 200 pts.

Answer in the spaces provided.

Your name (print):

I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual.

Please sign and date:

CS 558 Software Foundations, Fall 2022 Page 2 of 19

3.1 Concepts in Haskell and functional programming (30 pts)

Explain the following concepts, illustrating each answer with a simple example.

1. (15 pts) partial application of curried functions in Haskell.

CS 558 Software Foundations, Fall 2022 Page 3 of 19

2. (15 pts) laziness in Haskell and the manipulation of infinite lists.

CS 558 Software Foundations, Fall 2022 Page 4 of 19

3.2 Haskell—proofs on lists (20 pts)

The product function in Haskell can be defined as follows:

product :: [Int] -> Int

product [] = 1

product (x:xs) = x * product xs

Prove, by induction on lists, that

foldr (*) 1 xs = product xs

for all lists xs :: [Int].

You must clearly state your inductive hypothesis in the inductive case of your proof.

CS 558 Software Foundations, Fall 2022 Page 5 of 19

3.3 Typing and evaluation in the simply-typed lambda-calculus (40 pts)

1. (15 pts) Using the typing rules for the simply-typed lambda-calculus with numbers and
booleans (presented in Appendix A), attempt to construct a typing derivation for the
following term, starting in the empty typing environment:(

if iszero (succ 0) then (λx :Nat. iszero (succ x)) else (λn :Nat. iszero (predn))
)
0

If your derivation is successful, clearly state this and identify the resulting type.

If your derivation fails, construct as much of the derivation as possible and explain where
and why the derivation fails to assign a type.

CS 558 Software Foundations, Fall 2022 Page 6 of 19

2. (25 pts) Using the call-by-value evaluation rules for the simply-typed lambda-calculus
with numbers and booleans (presented in Appendix A), construct a full derivation for
each step of reduction of the following term:(

if iszero (succ 0) then (λx :Nat. iszero (succ x)) else (λn :Nat. iszero (predn))
)
0

Identify when no more reduction steps can be taken and whether the resulting term is a
value or whether the term is stuck at a non-value term.

You should attempt to reduce this term regardless of whether you found it to be well-
typed or not in part 1.

CS 558 Software Foundations, Fall 2022 Page 7 of 19

3.4 Concepts in lambda-calculi (30 pts)

Explain the following concepts, illustrating each answer with a simple example.

1. (15 pts) Church numerals and arithmetic in the untyped lambda-calculus.

CS 558 Software Foundations, Fall 2022 Page 8 of 19

2. (15 pts) typing environments for assigning types in the simply typed lambda-calculus.

CS 558 Software Foundations, Fall 2022 Page 9 of 19

3.5 Representing booleans in the untyped lambda-calculus (40 pts)

1. (10 pts) Following the convention introduced in class, define closed untyped lambda-
terms tru and fls that represent the boolean constants true and false, respectively.

CS 558 Software Foundations, Fall 2022 Page 10 of 19

2. (15 pts) Define untyped lambda-terms pair, fst, and snd that implement the operations of
pair creation, first element projection, and second element projection, respectively, such
that the following hold:

fst (pair f s) −→∗
β f snd (pair f s) −→∗

β s.

You must define any helper functions that you use in your answer.

CS 558 Software Foundations, Fall 2022 Page 11 of 19

3. (15 pts) Explain the workings of your pair, fst, and snd terms, as defined in answer to the
previous question.

CS 558 Software Foundations, Fall 2022 Page 12 of 19

3.6 General recursion in the simply typed lambda-calculus (40 pts)

1. (25 pts) With reference to the evaluation rules from Appendix A and Appendix B, con-
struct full derivations for the first two steps of evaluation of the following term in the
simply typed lambda-calculus extended with general recursion:(

fix (λf :Nat → Nat. λn :Nat. f n)
)
0

CS 558 Software Foundations, Fall 2022 Page 13 of 19

2. (15 pts) With reference to your answer to the previous question, summarize and explain
the behavior of the recursive function fix (λf :Nat → Nat. λn :Nat. f n).

END OF EXAM

CS 558 Software Foundations, Fall 2022 Page 14 of 19

This page intentionally left (almost) blank

CS 558 Software Foundations, Fall 2022 Page 15 of 19

A Reference: simply typed lambda-calculus with booleans and
numbers

Syntax

Terms, t ::= x variable
| λx : T. t abstraction
| t t application
| true constant true
| false constant false
| if t then t else t conditional
| 0 constant zero
| succ t successor
| pred t predecessor
| iszero t zero test

Values, v ::= λx : T. t abstraction value
| true true value
| false false value
| nv numeric value

Numeric values, nv ::= 0 zero value
| succ nv successor value

Types, T ::= T → T type of functions
| Bool type of booleans
| Nat type of natural numbers

Typing contexts, Γ ::= ∅ empty context
| Γ, x : T variable type assumption

CS 558 Software Foundations, Fall 2022 Page 16 of 19

Capture-Avoiding Substitution

[x 7→ t]x = t
[x 7→ t]y = y if x ̸= y

[x 7→ t](t1 t2) = ([x 7→ t]t1) ([x 7→ t]t2)

[x 7→ t](λx : T. t′) = λx : T. t′

[x 7→ t](λy : T. t′) = λy : T. ([x 7→ t]t′) if x ̸= y
[x 7→ t]true = true

[x 7→ t]false = false

[x 7→ t](if t1 then t2 else t3) = if ([x 7→ t]t1) then ([x 7→ t]t2) else ([x 7→ t]t3)

[x 7→ t]0 = 0

[x 7→ t](succ t′) = succ ([x 7→ t]t′)
[x 7→ t](pred t′) = pred ([x 7→ t]t′)

[x 7→ t](iszero t′) = iszero ([x 7→ t]t′)

NB: this definition is capture avoiding if we assume that t is a closed term.

Evaluation Rules

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-APP2)

(λx : T11. t12) v2 −→ [x 7→ v2]t12
(E-APPABS)

if true then t2 else t3 −→ t2
(E-IFTRUE)

CS 558 Software Foundations, Fall 2022 Page 17 of 19

if false then t2 else t3 −→ t3
(E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-IF)

t1 −→ t′1
succ t1 −→ succ t′1

(E-SUCC)

pred 0 −→ 0
(E-PREDZERO)

pred (succ nv1) −→ nv1
(E-PREDSUCC)

t1 −→ t′1
pred t1 −→ pred t′1

(E-PRED)

iszero 0 −→ true
(E-ISZEROZERO)

iszero (succ nv1) −→ false
(E-ISZEROSUCC)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-ISZERO)

CS 558 Software Foundations, Fall 2022 Page 18 of 19

Typing Rules

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

Γ, x : T1 ⊢ t2 : T2 x ̸∈ dom(Γ)
Γ ⊢ λx : T1. t2 : T1 → T2

(T-ABS)

Γ ⊢ t1 : T11 → T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-APP)

Γ ⊢ true : Bool
(T-TRUE)

Γ ⊢ false : Bool
(T-FALSE)

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T
Γ ⊢ if t1 then t2 else t3 : T

(T-IF)

Γ ⊢ 0 : Nat
(T-ZERO)

Γ ⊢ t : Nat
Γ ⊢ succ t : Nat

(T-SUCC)

Γ ⊢ t : Nat
Γ ⊢ pred t : Nat

(T-PRED)

Γ ⊢ t : Nat
Γ ⊢ iszero t : Bool

(T-ISZERO)

CS 558 Software Foundations, Fall 2022 Page 19 of 19

B Reference: extending the simply typed lambda-calculus with
general recursion

Extended Syntax

Extended terms, t ::= · · · | fix t fixed point of t

Extended Capture-Avoiding Substitution

[x 7→ t](fix t′) = fix ([x 7→ t]t′)

New Evaluation Rules

fix (λf : T1. t2) −→ [f 7→ (fix (λf : T1. t2))]t2
(E-FIXBETA)

t1 −→ t′1
fix t1 −→ fix t′1

(E-FIX)

New Typing Rules

Γ ⊢ t1 : T1 → T1

Γ ⊢ fix t1 : T1
(T-FIX)

	Concepts in Haskell and functional programming (30 pts)
	Haskell—proofs on lists (20 pts)
	Typing and evaluation in the simply-typed lambda-calculus (40 pts)
	Concepts in lambda-calculi (30 pts)
	Representing booleans in the untyped lambda-calculus (40 pts)
	General recursion in the simply typed lambda-calculus (40 pts)
	Reference: simply typed lambda-calculus with booleans and numbers
	Reference: extending the simply typed lambda-calculus with general recursion

