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Forward kinematics (FK) is the process of
calculating the position and orientation of a
robot’s end-effector from its joint angles.
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The process of finding the joint angles needed to
reach a desired position and orientation is called
inverse kinematics (IK).
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Infinite
Solutions

A robot arm with 7 or more
degrees-of-freedom has infinite
solutions
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http://drive.google.com/file/d/1D9UC7HWORXkeQmVBx4wrnewAzriAltWh/view

1.

Why is IK suitable for machine learning?

Non-Linear

e |K s highly non-linear
e Alis well-suited to approximate
complex mappings

Fast Inference

Complex Objective Function

e Real time response is critical for
robots
e Forward pass is faster than iteration

e Numerical methods can fail to
minimize if improperly seeded

Problem Statement

Addresses Redundancy

e Redundant robots have infinite IK
solutions
e Can learn a distribution of solutions




=

N

(3

- Problem Statement

- GGIK Architecture
“Improvements

- Experimental Results

“Drawing a Conclusion



Robots To Graphs

How do we model our question as a graph?

2. GGIK Architecture - Dataset Generation



iemannian Optimization
or Distance-Geometric
Inverse Kinematics

Filip Maric, Matthew Giamou, Adam W.
Hall, Soroush Khoubyarian, Ivan Petrovic,
Jonathan Kelly
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Riemannian Optimization for Distance-Geometric
Inverse Kinematics

Filip Mari¢ ', Matthew Giamou ", Adam W. Hall“, Soroush Khoubyarian, Ivan Petrovi¢”, and Jonathan Kelly

Abstract—Solving the Inverse kinematics problem Is a funda-
mental challenge in motion planning, control, and calibration for
articulated robots. Kinematic models for these robots are typically
parameterized by joint angles, generating a complicated mapping
between the robot configuration and the end-effector pose. Alterna-
tively, the model and task n be
using Invariant distances between points :maclled to the robot.
In this article, we formalize the equivalence of distance-based
Inverse kinematics and the distance geometry problem for a large
class of articulated robots and task constraints. Unlike previous
approaches, we use the connection between distance geometry and
low-rank matrix to find inverse by
completing a partial Euclidean distance matrix through local opti-
mization. Furthermore, we parameterize the space of Euclidean
distance matrices with the Riemannian manifold of fixed-rank
Gram matrices, allowing us to leverage a variety of mature Rieman-
nian optimization methods. Finally, we show that bound smoothing
can be used to generate without

p overhead, imp g B We
that our Inverse kinematics solver achieves higher success rates
than and them
on problems that |nvolvr many workspace mmtralnts

Index Terms—C 2 Ys i d
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Fig. 1. Overview ur I.hn. mrrxmd algorithm. A goal end-cffcctor position pg
is defincd for a th ¥ robotic manipulator (top); the IK problem is to find
the corresponding joint angk.\ ©. Our method uses the matrix D of distances
between points P common Lo all feasible IK solutions o define an incompletc
graph whose cdges arc weighted by known distances. Then, we apply EDM
completion with the known distance sclection matrix £2 to rocover the weights
corresponding 1o the unknown edges, solving the IK problem.

L. INTRODUCTION

RTICULATED robots consist of actuated revolute joints
Aconncclcd by rigid links. A significant portion of the
difficulty associated with performing a specific task involves
finding joint angles that achieve a desired end-effector pose.
Identifying a set of joint angles or a configuration that reaches
the desired goal pose(s) of one or more end-effectors is known as
the inverse kinematics (1K) problem [1]. In general, this problem
cannot be solved analytically and admits an infinite number of
solutions for robots with redundant degrees of freedom (DOFs).
Therefore, most appmachcs Tesort to numerical methods that
solve ined local of problems over joint angles.
This leads to ints on end-effector and link poses that




Distance-Geometric
Representations

Transforms

1. Place two points along the rotation axis of
each joint.

Points

2. For each consecutive pair of joints,
connect all four points with edges

3. Let edge weights be the Euclidean
distance between points

Graph

2. GGIK Architecture - Dataset Generation



Input & Output Graphs

A partial graph G represents the
question/input:

G=G,u G,

/Structure Graph N

P
Pose Goal Graph

A complete graph G represents
the answer/output:

G =G, G G;

2. GGIK Architecture - Dataset Generation

/Structure Graph )
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Joint Solution Graph




Define a robot PN

Dataset structure >~ J %

U\ Repeat for each sample

Generation o letodms

\

( Randomize joint
i i angles
Use forward kinematics to :
\
; .. F d - Create complete
generate a dataset: I Robot is in Forward Position and graphp
.. | random orientation
1. Randomize /O_mts t? | configuration data
create a configuration | J
I
2. Use forward kinematics :
fo calculate the end- |
effect position I Create partial
| graph G
\
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Generative Graphical Inverse Kinematics

Oliver Limoyo ™, Filip Mari¢ ©, Matthew Giamou™, Member, IEEE,
, Senior Member, i

and Jonathan Kelly

Abstract—Quickly and reliably finding accurate inverse kine-
matics (IK) solutions remains a challenging problem for many
robot manipulators. Existing numerical solvers are breadly ap-
phubl! bu! |yp|ully only produce a single solution and rtly on

Petra Alexson, Ivan Petrovi¢

L. INTRODUCTION

OBOTIC manipulation tasks arc naturally defined in terms
Ro[ end-clfector poses. However, the configuration of a

Recent Iﬂmng-hnd that i the entire

is typically ':pculn.d in terms of joint ungh:\ and

feasible set of solutions hm shown pmmne in generating mul-
tiple fast and accurate IK results in parallel. However, existing
learning-based i have a signil each robot
of interest requires a specialized model that must be trained from
strw:h. To lddres this key sborlmmnp, we propese a novel

robot coupled with a graph
structure that allows us to leverage the ility of r,nph

the joint ) that {10 a given
end-cffector posc requires solving the inverse kinematics (1K)
pmblcm For redundant manipulators (i.c., thosc with more than
six degrees of [reedom or DOF), target Pposes may be reachable
by an infinite sct of fcasible While redundancy
allows high-level algorithms (c.g., motion planners) to choose

neural (GNNs). Our appi which we call

graphical 1K (GGIK), is the first learned IK solver that is able
to efficiently yield a large number of diverse solutions in parallel
while also displaying the ability to generalize—a single learned
maodel can be used to produce IK solutions for a variety of different
robots. When compared to several other learned IK methods,
GGIK provides more accurate solutions with the same amount of
training data. GGIK can also generalize reasonably well to robot
manipulators unseen during training. In addition, GGIK is able to
learn a constrained distribution that encodes joint limits and scales
well with the number of robot joints and led soluti Finally,

s that best fit the overall task, it makes solving IK
substantially harder.

Since the full sctof IK snlulmns cannot gunumlly be derived
analytically for redund. 1 fividual
tions arc found by locally scarching the configuration space
wilh numerical optimization methods and geometric heuristics.
While existing numerical solvers arc broadly applicable, they
usually only produce a single solution at a ime and minimize
highly nonconvex objective functions with incremental scarch

GGIK can In med to complement loﬂl IK solvmby providing a
reliable i ion for the local process.

Index Terms—Graph neural networks, Robot kinematics, Robot
learning.
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techniques. The scarch space can sometimes be reduced by con-
straiming solutions to have particular propertics (c.g., collision
avoidance or manipulability).

These limitations have motivated the usc of Icamed 1K models
that approximalte the entire feasible set of solutions. In terms
of success rate, learned models that output individual solutions
compele with the best numerical IK solvers when high accu-
racy is not required [1]. Data-driven methods arc also uscful
for intcgrating abstract critcria, such as “human-like™ poscs or
motions |2]. Generative approaches |3], [4] have demonstrated
the ability to rapidly produce a large number of approximate 1K
solutions |5]. Access (o a large number of conligurations fitting
desired constraints is beneficial in applications like motion plan-
ning [6]. Unfortunatcly, these learned models, parameterized
by deep neural networks (DNNs), require specific configura-
tion and end-clTector input—outpul vector pairs [or training (by
design). In wm, it is not [K)&\Ibll. to generalize learned \(iu-
Gom g0 bty b DOK 11




Architecture

GGIK is described as a Conditional Variational Autoencoder (CVAE)

N\

Training

: Prior Latent :
;_. GNNI)I'i(II‘ Node Graph ::

GNN(IP(‘

2. GGIK Architecture



GNN

prior

Encodes a partial graph into latent space while optimizing the distribution, p, (£ G)

Partial Graph

Node Features:
° Position
e Type
Edge Features
° Distance

==

EGNN

Node-Level
Latent
Representation
of G

2. GGIK Architecture

_>

\

Linear
Variational
Autoencoder
(LVAE)

/

/

e — — — — — — —

Latent Conditional
Distribution Parameters

ettt . ~
\
Means (u) I
I
I
Variances (0?) |
I
Mixture Weights (m) :
/

______ -



GNN

decoder

Decodes a sampled latent vector into G while optimizing the distribution, p, (G | Z, G)

f
Node-Level Latent
= Representation of
‘,—3 ~ Geometric Procedure
= G
M < —— — Solution Graph G —] Joint Angles
<
O
= EGNN
(o) Z Samples (Node G
© Vectors) i
Node-Type Feature —
. L]
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GNN

encoder

Encodes a complete graph into latent space while optimizing the distribution, q, (Z | G, G)

Latent Conditional
a Node-Level Latent Distribution Parameters
Representation of —————— =
5 C ! \
E G Linear | Mean (u) |
Z J > Variational - | |
g Autoencoder | — |
Z Node-Level Latent (LVAE) | Variance (0?)
O Representation of l |
N o _/
\ /
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Architecture Revisited

GGIK optimizes three conditional latent
distributions:

e p,(ZIG)
e p,(GIZ G)

e q,(ZIG,G)

GNN[}I'i()I' Node Graph

Training\

Prior Latent :

2. GGIK Architecture




Optimization

The evidence lower bound (ELBO) is used to optimize

Reconstruction: How well a complete

graph G matches itself after being ~

encoded and decoded L= Eq¢ (z|G) [log P~ (G | G7 Z)]

KL Divergence: How close the latent =~
distribution of a partial graph G and — BKL(C]Qﬁ(Z ‘ G) H pW(Z | G))
complete graph G are

B-Scaling: Gradually increases the weight
of the KL Divergence term

2. GGIK Architecture



Inference

At inference time, a partial graph can generate a distribution of complete graphs

The specific solution is dependent on how
the latent space Z is sampled

: , Prior Latent
: Gl\Npri()‘r Node Graph':

e Zisin the form of a Gaussian Mixture
Model

2. GGIK Architecture
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The Issue of Distance-Graphs

When consecutive joints are not coplanar, we
can no longer uniquely represent a robot

If p,; replaces p, and edge features include

distance

Then the geometric graph is no longer unique

3. Improvements

p U




Proposal: Distance-Direction-Graphs

We propose to add direction to edge features

If p,; replaces p, and edge features include
distance and direction vectors

Then the geometric graph is unique

p U

3. Improvements



Can we enhance GGIK
to solve for non-
coplanar robots and
improve accuracy?

The problem

3. Improvements

Determine whether
attention over the
direction of graph edges
will improve accuracy
on non-coplanar robots.

The objective



What Can We Improve Using Attention?

Directional Awareness

Learn how to weight messages based on
direction vectors, capturing orientation
sensitive relationships

Flexible Influence

Better for Non-Coplanar

Helps focus updates on joints that are aligned
or structurally important

3. Improvements

Instead of treating all edges equally, learn
which neighbors are relevant, both spatially
and semantically




Base Architecture/Changes Phi_E

Base Architecture
Purpose: Generates the raw message that passes through the GNN from one node to another |
nputs:
Inputs: : : . .
: h_i, h_j, | Ixci-xj [ ]2,

- h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place in the structure) edge_attr
« h_j: Latent feature vector of sending node.
«lIx_i-x_jI12:Squared Euclidean distance . \
+ edge_attr: Scalar Euclidean distance (I Ix_i- x_j 1) (1D)

MLP
Output:
*m_h_ij : Alearned abstract 3 dimensional vector that encodes semantic and relational information between
the two nodes, one for each edge O t t

utput:
Changes: m_h_ij
edge_attr: Scalar Euclidean distance (I Ix_i - x_j I I) (1D) AND Directional Vector (x_j -x_i for (x,y,z)) (3D original)
m_h_ij : 64 dimensional vector (64 D mOdIerd)

3. Improvements



Base Architecture/Changes Phi_X

Base Architecture

Purpose: Uses the message vector m_h_ij to compute a scalar used to scale Base Architecture Modified
the directional vector for updating node positions.
Input: m_h_ij : Message features computed by phi_e. [ Input: m_h_ij ’ -
Output: m_x_ij = scalar x (x_j — x_i), equivariant directional update Inputs: m_h_ij,

¢ d_ij =(x_j - x_i)
Changes: MLP (Directional Vector)

Purpose: Takes the message m_h_ij and the directional vector d_ij = x_j - x_i, and

learns the geometric update to the node's position.
. . MLP
Inputs: (xj = x) ( )
scalar (Directional

Vector)

* m_h_ij : Message features computed by phi_e.

- d_ij: Directional Vector (x_j -x_i for (x,y,z)) Y Output:

m_x_ij
Output: (3D)
m_x_ij =
scalar x (x_j = x_i)
(3D)

Output: m_x_ij : still equivariant directional update, but now shaped by the
joint interaction of the message and the vector geometry

Why?: It’s crucial when the same distance can imply very different directional updates,

which only happens in non-coplanar cases.

3. Improvements



New! attn_mlp: Attention Scoring Network

Base Architecture

Purpose: Computes a scalar attention weight a_ij for each edge, based on the Inputs:
sending/receiving nodes and the edge attributes. This tells the GNN how

important each message is. h_i, h_j, edge_attr

Inputs: ‘

« h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place MLP
in the structure)

+ h_j: Latent feature vector of sending node.

edge_attr: Scalar Euclidean distance (I Ix_i - x_j | 1) (1D) AND Directional Vector (x_j scalar score

-x_i for (x,y,2)) f

Output:
softmax
+ Scalar attention weights a_ij € [O, 1] normalized per target node via softmax.
Y
* These are used to scale both m_h and m_x, changing how much influence each
neighbor has. Output:
a_ij€[0, 1]

3. Improvements



Base Architecture/Changes Phi_H

Base Architecture

Purpose: Updates the node's latent embedding (h_i) by combining its current state with the |n pUtS'
aggregated messages (m_h) from its neighbors. *
h_i, m_h

Inputs:

+ h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place in the #
structure)

* m_h: Aggregated message

Output: M LP

* new h_i: new latent feature vector, passed to the next GNN layer.

Changes:

m_h: 3D in original, 64 in modified, Also all node messages have same weight in aggregation OUtpUt:
in original, but are attention weighted in modified. .
new h_li

Why?: Neighbors now contribute based on learned relevance, and now have richer semantic

and relational encoding

3. Improvements



Flow Overview

For each edge (i <- j):

1. phi_e creates a message m_h_ij.

2. phi_x uses m_h_ij and direction d_ij to get geometric update m_x_ij.
3. attn_mip computes how much to weigh them (a_ij).

4. Both m_h_lj and m_x_ij are scaled by a_ij.

5. The GNN aggregates these for each node. (Z_j a_ij m_x_ij and
2 ja_ijm_h_ijtogetm xand m_h

6. phi_h fuses h_i with aggregated m_h to update h_i.

7. The node's position x_i is updated via x_i' = x_i + m_x/ ¢ (normalized if
needed).

3. Improvements

Important functions:

forward(): receives node positions x, hidden features h, edge
attributes, and edge indices. Calls propagate(), kicking off the
message passing. Same in both

propagate(): PyTorch Geometric internal dispatcher. It delegates
to message(), aggregate(), and update(). Same in both

message(): Computes messages from each neighbor j — i.
Uses phi_e, phi_x and attention_mlp which are different in
modified version. Scales messages with attention in modified.

aggregate(): Collects all messages per node. Attention weighted
messages in modified version.

update(): calls phi_h to update h_i and does x_i + m_x/c to
update x_i
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Experimental Procedure

4. Experimental Results

___________________________________________________ >
_______________ - -_—— =P
100 — Compute

"7 Sample [~ gg:; -1 Accuracy ----»

Problems for Posr[.lon

& Rotation
____________________________________________ >
___________________________________________________ »




GGIK vs. GGIK+ Training

GGIK (GNN) GGIK (GAT)
Samples | 4,096,000 5,120
Epochs 300 50

4. Experimental Results




How does EGAT compare to EGNN?

-34.19%

NOt GOOdI

But with the ability to the solve for non-
coplanar robots!

4. Experimental Results



Position Error Comparison Across Models and Robots

2500
; Model
‘1 egat coplanar
\
Coplanar vs. Non-Coplanar: |1 egat non coplanar
EGNN: [ egnn coplanar
2000 +15.82% [0 egnn non coplanar
EGAT: -0.84%
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Egnn Coplanar 5120

Pose Loss KL Divergence Loss Total Loss
25 —— Training —— Training P —— Training
—— Validation —— Validation 35 —— Validation
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— 2 2 2
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Egat Non Coplanar 5120
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Key Findings

EGNN Handles Non-Coplanar
Data

EGAT Reaches a Lower KL
Divergence Loss

e When training on non-coplanar
data vs. coplanar data:
o EGNN: +15.82%
o EGAT: -0.84%

5. Drawing a Conclusion

Attention is likely helping the model
learn a better latent representation

Attention may be hurting the the
decoding process




E(n) Equivariant
Graph Neural
Networks

Victor Garcia Satorras, Emiel Hoogeboom,
Max Welling

5. Drawing a Conclusion
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E(n) Equivariant Graph Neural Networks

Victor Garcia Satorras' Emiel Hoogeboom ! Max Welling '

Abstract

This paper introduces a new model to learn graph
neural networks equivariant to rotations, transla-
tions, reflections and permutations called E(n)-
Equivariant Graph Neural Networks (EGNNs). In
contrast with existing methods, our work does not
require computationally expensive higher-order
representations in intermediate layers while it
still achieves competitive or better performance.
In addition, whereas existing methods are lim-
ited to equivariance on 3 dimensional spaces,
our model is easily scaled to higher-dimensional
spaces. We demonstrate the effectiveness of our
method on dynamical systems modelling, repre-
sentation learning in graph autoencoders and pre-
dicting molecular properties.

1. Introduction

Although deep learning has largely replaced hand-crafted
features, many advances are critically dependent on induc-
tive biases in deep neural networks. An effective method to
restrict neural networks to relevant functions is to exploit
the symmetry of problems by enforcing equivariance with
respect to transformations from a certain symmetry group.
Notable examples are translation equivariance in Convo-
lutional Neural and i quivari in
Graph Neural Networks (Bruna et al., 2013; Defferrard et al.,
2016; Kipf & Welling, 2016a).

Many problems exhibit 3D translation and rotation symme-
tries. Some examples are point clouds (Uy et al,, 2019), 3D

( et al., 2014) or N-body
particle simulations (Kipf et al., 2018). The group corre-
ding to these i named the i group:

§E(3) or when reflections are included E(3). It is often de-
sired that predictions on these tasks are either equivariant or

Figure 1. Example of rotation equivariance on a graph with a graph
neural network ¢

Recently, various forms and methods to achieve E(3) or
SE(3) equivariance have been proposed (Thomas et al.,
2018; Fuchs et al., 2020; Finzi et al., 2020; Kéhler et al.,
2020). Many of these works achieve innovations in study-
ing types of higher-order representations for intermediate
network layers. However, the transformations for these
higher-order rep ions require ici Or approx-
imations that can be expensive to Additionally,
in practice for many types of data the inputs and outputs
are restricted to scalar values (for instance temperature or
energy, referred to as type-0 in literature) and 3d vectors
(for instance velocity or momentum, referred to as type-1 in
literature).

In this work we present a new architecture that is translation,
rotation and reflection equivariant (E(n)), and permutation
faiaei ith cocnans inout cat af aainee O 1a1




The Importance of E(n)
Equivariance

Without EGNN this model would fail dramatically

In an equivariant system, a translation of an input will
produce the identical output translated

TABLE V
COMPARISON OF DIFFERENT NETWORK ARCHITECTURES
Model Name Err. Pos. [mm)] Err. Rot. [deg] Test ELBO
mean  min max Q Q3 mean min max Q: Q3
EGNN [59] 4.6 1.5 8.5 3.3 5.8 04 0.1 0.6 0.3 0.4 -0.05
MPNN [64] 1432 629 273.7 113.1 169.1 177 53 13.6 21.6 34.1 -8.3
GAT [65] - - - - - - - - - - -12.41
GCN [66] - - - - - - - - - - -12.42
GRAPHsage [67] - - - - - - - - - - -10.5

5. Drawing a Conclusion



Future Work

Concatenate Layer
Types

Biased Data
Generation

GAT, GCN, GNN layers
perform worse, but may still
have some value

Concatenate EGNN+GAT/
GCN/GNN

5. Drawing a Conclusion

GGIK has been proven to
respond positively to biased
data

Bias data towards more
stable solutions

Cascaded CVAE
For High Precision

Take inspiration from
Cascading “Super-
Resolution” Diffusion models

A cascaded GGIK model
can use the previous latent
space as a starting point




e Relaxed Coplanar Restrictions
e Quantified Non-Coplanar Dataset
e Inserted Attention

e (Quantified Attention-Enhanced Model

Thank you!

Calvin Stahoviak
Gabriel Urbaitis

Institution: University of New Mexico
Course: ST, Advance Machine Learning
Professor: Trilce Estrada
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Types of Datasets
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VAE vs. CVAE

A variational autoencoder learns a normal A conditional variational autoencoder
distribution learns a distribution conditioned on
another variable

P(G) = [p(G | Z) p(2) dZ p(G1G)=[p(GlZ G)pZ G) dZ

Each output is sampled given its input
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Distance Geometry Problem (DGP)

DGP asks, what is the location of a set of points given only the edge distances between
them?

GGIK Output

Geometric

Procedure

Set of Node
v
DGP N Points -
Solver
G Set of Edges -

Joint Angles

Set of Edges
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