
Generative Graphical
Inverse Kinematics (GGIK)

Institution: University of New Mexico
Course: ST, Advance Machine Learning
Professor: Trilce Estrada

Generative Graphical
Inverse Kinematics (GGIK)

Calvin Stahoviak
Gabriel Urbaitis

05  

2

Agenda Science Presentation

Problem Statement

GGIK Architecture

Improvements

Experimental Results

Drawing a Conclusion

1.

2.

3.

4.

5.

3

Forward kinematics (FK) is the process of
calculating the position and orientation of a

robot’s end-effector from its joint angles.

Forming a Hypothesis Science Presentation

1. Problem Statement

θ1= 45°

θ2= -10°

θ3= 0°

End-effector:
x = ?  
y = ?  
z = ?

4

Forming a Hypothesis Science Presentation

The process of finding the joint angles needed to
reach a desired position and orientation is called

inverse kinematics (IK).

1. Problem Statement

θ1= ?°

θ2= ?°
θ3= ?°End-effector:

x = 1.5  
y = 0.4  
z = 0.0

A robot arm with 7 or more
degrees-of-freedom has infinite

solutions

Infinite
Solutions

YouTube

http://drive.google.com/file/d/1D9UC7HWORXkeQmVBx4wrnewAzriAltWh/view

Fast Inference

● Real time response is critical for
robots

● Forward pass is faster than iteration

● IK is highly non-linear
● AI is well-suited to approximate

complex mappings

● Numerical methods can fail to
minimize if improperly seeded

● Redundant robots have infinite IK
solutions

● Can learn a distribution of solutions

Why is IK suitable for machine learning?
Non-Linear

Addresses RedundancyComplex Objective Function

1. Problem Statement

7

Agenda Science Presentation

Problem Statement

GGIK Architecture

Improvements

Experimental Results

Drawing a Conclusion

1.

2.

3.

4.

5.

Robots To Graphs
How do we model our question as a graph?

2. GGIK Architecture - Dataset Generation

Riemannian Optimization
for Distance-Geometric

Inverse Kinematics
Filip Marić, Matthew Giamou, Adam W.

Hall, Soroush Khoubyarian, Ivan Petrović,
Jonathan Kelly

IEEE Transactions on Robotics, 2022

2. GGIK Architecture - Dataset Generation

Distance-Geometric
Representations

1. Place two points along the rotation axis of
each joint. 

2. For each consecutive pair of joints,
connect all four points with edges 

3. Let edge weights be the Euclidean
distance between points

2. GGIK Architecture - Dataset Generation

Input & Output Graphs
A partial graph G̃ represents the
question/input:

G̃ = Gs∪ Ge

A complete graph G represents
the answer/output:

G = Gs∪ Ge∪ Gj

2. GGIK Architecture - Dataset Generation

Dataset
Generation
Use forward kinematics to
generate a dataset:

1. Randomize joints to
create a configuration  

2. Use forward kinematics
to calculate the end-
effect position

Define a robot
structure

Robot is in
random

configuration

Randomize joint
angles

Position and
orientation

data

Forward
kinematics

Create partial
graph

Create complete
graph

Repeat for each sample
in the dataset

2. GGIK Architecture - Dataset Generation

Generative
Graphical Inverse

Kinematics
Oliver Limoyo, Filip Marić, Matthew

Giamou, Petra Alexson, Ivan Petrović,
Jonathan Kelly

2. GGIK Architecture

IEEE Transactions on Robotics, 2024

Architecture

2. GGIK Architecture

GGIK is described as a Conditional Variational Autoencoder (CVAE)

GNNprior

Partial Graph

Node Features:
● Position
● Type

Edge Features
● Distance

EGNNEGNNEGNNEGNNEGNN

Latent Conditional
Distribution Parameters

Linear
Variational

Autoencoder
(LVAE)

Variances (σ²)

Means (μ)

Mixture Weights (π)

2. GGIK Architecture

Encodes a partial graph into latent space while optimizing the distribution, p𝛾 (Z | G̃)

Node-Level
Latent

Representation
of G̃

GNNdecoder

EGNNEGNNEGNNEGNNEGNN

Node-Type Feature

2. GGIK Architecture

Decodes a sampled latent vector into G while optimizing the distribution, p𝛾 (G | Z, G̃)

Node-Level Latent
Representation of

 G̃
Solution Graph G

C
O

N
C

AT
EN

AT
IO

N

Z Samples (Node
Vectors)

Joint Angles

Geometric Procedure

GNNencoder

2. GGIK Architecture

Encodes a complete graph into latent space while optimizing the distribution, q𝜙 (Z | G, G̃)

Latent Conditional
Distribution Parameters

Linear
Variational

Autoencoder
(LVAE) Variance (σ²)

Mean (μ)

Node-Level Latent
Representation of

G̃

Node-Level Latent
Representation of

G

C
O

N
C

AT
EN

AT
IO

N

Architecture Revisited

2. GGIK Architecture

GGIK optimizes three conditional latent
distributions:

● p𝛾 (Z | G̃)  

● p𝛾 (G | Z, G̃)  

● q𝜙 (Z | G, G̃)

Optimization
The evidence lower bound (ELBO) is used to optimize

2. GGIK Architecture

Reconstruction: How well a complete
graph G matches itself after being
encoded and decoded

KL Divergence: How close the latent
distribution of a partial graph G̃ and
complete graph G are

𝜷-Scaling: Gradually increases the weight
of the KL Divergence term

Inference

The specific solution is dependent on how
the latent space Z is sampled

● Z is in the form of a Gaussian Mixture
Model

2. GGIK Architecture

At inference time, a partial graph can generate a distribution of complete graphs

21

Agenda Science Presentation

Problem Statement

GGIK Architecture

Improvements

Experimental Results

Drawing a Conclusion

1.

2.

3.

4.

5.

The Issue of Distance-Graphs

When consecutive joints are not coplanar, we
can no longer uniquely represent a robot

If pv1 replaces pv and edge features include
distance  
 
Then the geometric graph is no longer unique

3. Improvements

Proposal: Distance-Direction-Graphs

We propose to add direction to edge features

If pv1 replaces pv and edge features include
distance and direction vectors 
 
Then the geometric graph is unique

eu,v1

eu,v2

3. Improvements

The problem

Can we enhance GGIK
to solve for non-

coplanar robots and
improve accuracy?

The objective

Determine whether
attention over the

direction of graph edges
will improve accuracy

on non-coplanar robots.

3. Improvements

What Can We Improve Using Attention?

Learn how to weight messages based on
direction vectors, capturing orientation
sensitive relationships

Instead of treating all edges equally, learn
which neighbors are relevant, both spatially
and semantically

Helps focus updates on joints that are aligned
or structurally important

Directional Awareness

Flexible Influence

Better for Non-Coplanar

3. Improvements

Base Architecture/Changes Phi_E
Base Architecture

Purpose: Generates the raw message that passes through the GNN from one node to another

Inputs:

• h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place in the structure)

• h_j: Latent feature vector of sending node.

• | |x_i - x_j | |2 : Squared Euclidean distance .

• edge_attr: Scalar Euclidean distance (| |x_i - x_j | |) (1D)

 
Output:

• m_h_ij : A learned abstract 3 dimensional vector that encodes semantic and relational information between
the two nodes, one for each edge

Changes:

edge_attr: Scalar Euclidean distance (| |x_i - x_j | |) (1D) AND Directional Vector (x_j -x_i for (x,y,z))

m_h_ij : 64 dimensional vector

3. Improvements

Base Architecture/Changes Phi_X
Base Architecture

Purpose: Uses the message vector m_h_ij to compute a scalar used to scale
the directional vector for updating node positions.

Input: m_h_ij : Message features computed by phi_e. 
Output: m_x_ij = scalar × (x_j − x_i), equivariant directional update

Changes:

Purpose: Takes the message m_h_ij and the directional vector d_ij = x_j - x_i, and
learns the geometric update to the node's position.

Inputs:

• m_h_ij : Message features computed by phi_e.

• d_ij: Directional Vector (x_j -x_i for (x,y,z))

Output: m_x_ij : still equivariant directional update, but now shaped by the
joint interaction of the message and the vector geometry

Why?: It’s crucial when the same distance can imply very different directional updates,
which only happens in non-coplanar cases.

3. Improvements

New! attn_mlp: Attention Scoring Network
Base Architecture

Purpose: Computes a scalar attention weight a_ij for each edge, based on the
sending/receiving nodes and the edge attributes. This tells the GNN how
important each message is.

Inputs:

• h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place
in the structure)

• h_j: Latent feature vector of sending node.

edge_attr: Scalar Euclidean distance (| |x_i - x_j | |) (1D) AND Directional Vector (x_j
-x_i for (x,y,z))

Output:

• Scalar attention weights a_ij € [O, 1] normalized per target node via softmax.

• These are used to scale both m_h and m_x, changing how much influence each
neighbor has.

3. Improvements

Base Architecture/Changes Phi_H
Base Architecture

Purpose: Updates the node's latent embedding (h_i) by combining its current state with the
aggregated messages (m_h) from its neighbors.

Inputs:

• h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place in the
structure)

• m_h: Aggregated message  
Output:

• new h_i: new latent feature vector, passed to the next GNN layer.

Changes:

m_h: 3D in original, 64 in modified, Also all node messages have same weight in aggregation
in original, but are attention weighted in modified.

Why?: Neighbors now contribute based on learned relevance, and now have richer semantic
and relational encoding

3. Improvements

Flow Overview
For each edge (i <- j):

1. phi_e creates a message m_h_ij.

2. phi_x uses m_h_ij and direction d_ij to get geometric update m_x_ij.

3. attn_mip computes how much to weigh them (a_ij).

4. Both m_h_Ij and m_x_ij are scaled by a_ij.

5. The GNN aggregates these for each node. (Σ_j α_ij m_x_ij and
Σ_j α_ij m_h_ij) to get m_x and m_h

6. phi_h fuses h_i with aggregated m_h to update h_i.

7. The node's position x_i is updated via x_i' = x_i + m_x / c (normalized if
needed).

Important functions:

forward(): receives node positions x, hidden features h, edge
attributes, and edge indices. Calls propagate(), kicking off the
message passing. Same in both

propagate(): PyTorch Geometric internal dispatcher. It delegates
to message(), aggregate(), and update(). Same in both  

message(): Computes messages from each neighbor j → i. 
Uses phi_e, phi_x and attention_mlp which are different in
modified version. Scales messages with attention in modified.

aggregate(): Collects all messages per node. Attention weighted
messages in modified version. 

update(): calls phi_h to update h_i and does x_i + m_x / c to
update x_i

 

3. Improvements

31

Agenda Science Presentation

Problem Statement

GGIK Architecture

Improvements

Experimental Results

Drawing a Conclusion

1.

2.

3.

4.

5.

Experimental Procedure

Trained
GGIK

100
Sample

Problems

Compute
Accuracy

for Position
& Rotation

4. Experimental Results

GGIK vs. GGIK+ Training

4. Experimental Results

GGIK (GNN) GGIK (GAT)

Samples 4,096,000 5,120

Epochs 300 50

4. Experimental Results

-34.19%
But with the ability to the solve for non-

coplanar robots!

How does EGAT compare to EGNN? Not Good!

4. Experimental Results

Coplanar vs. Non-Coplanar:
EGNN:

+15.82%
EGAT: -0.84%

4. Experimental Results

Coplanar vs. Non-Coplanar:
EGNN: +5.40%

EGAT: -4.23%

EGNN
EGAT:
Loss
Curves

4. Experimental Results

38

Agenda Science Presentation

Problem Statement

GGIK Architecture

Improvements

Experimental Results

Drawing a Conclusion

1.

2.

3.

4.

5.

● Attention is likely helping the model
learn a better latent representation 

● Attention may be hurting the the
decoding process

● When training on non-coplanar
data vs. coplanar data:
○ EGNN: +15.82%
○ EGAT: -0.84%

Key Findings
EGNN Handles Non-Coplanar
Data

EGAT Reaches a Lower KL
Divergence Loss

5. Drawing a Conclusion

E(n) Equivariant
Graph Neural

Networks
Victor Garcia Satorras, Emiel Hoogeboom,

Max Welling

arXiv.org, 2022

5. Drawing a Conclusion

Without EGNN this model would fail dramatically

In an equivariant system, a translation of an input will
produce the identical output translated

The Importance of E(n)
Equivariance

5. Drawing a Conclusion

GAT, GCN, GNN layers
perform worse, but may still
have some value

Concatenate EGNN+GAT/
GCN/GNN

GGIK has been proven to
respond positively to biased
data

Bias data towards more
stable solutions

Take inspiration from
Cascading “Super-
Resolution” Diffusion models

A cascaded GGIK model
can use the previous latent
space as a starting point

Future Work

Concatenate Layer
Types

Biased Data
Generation

Cascaded CVAE
For High Precision

5. Drawing a Conclusion

Institution: University of New Mexico
Course: ST, Advance Machine Learning
Professor: Trilce Estrada

● Relaxed Coplanar Restrictions 

● Quantified Non-Coplanar Dataset 

● Inserted Attention  

● Quantified Attention-Enhanced Model

Thank you!

Calvin Stahoviak
Gabriel Urbaitis

Supplemental Slides

Types of Datasets
Model-Specific Model-Aggregate Randomized

Dataset Dataset

20 Samples Each
100 Samples

Dataset

1 Sample Each

100 Random
Robot Structures

Supplemental Slides

VAE vs. CVAE
A conditional variational autoencoder
learns a distribution conditioned on
another variable

A variational autoencoder learns a normal
distribution

Supplemental Slides

p(G | G̃) = ∫ p(G | Z, G̃) p(Z, G̃) dZp(G) = ∫ p(G | Z) p(Z) dZ

Each output is sampled given its input

Distance Geometry Problem (DGP)
DGP asks, what is the location of a set of points given only the edge distances between
them?

Supplemental Slides

Set of Edges

Set of Node
PointsDGP

Solver
Set of Edges

Geometric
Procedure

Joint Angles

GGIK Output

