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Forward kinematics (FK) is the process of 
calculating the position and orientation of a 

robot’s end-effector from its joint angles.

Forming a Hypothesis Science Presentation

1. Problem Statement

θ1= 45°

θ2= -10°

θ3= 0°

End-effector:
x = ?    
y = ?  
z = ? 
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Forming a Hypothesis Science Presentation

The process of finding the joint angles needed to 
reach a desired position and orientation is called 

inverse kinematics (IK).

1. Problem Statement

θ1= ?°

θ2= ?°
θ3= ?°End-effector:

x = 1.5    
y = 0.4  
z = 0.0



A robot arm with 7 or more 
degrees-of-freedom has infinite 

solutions

Infinite 
Solutions

YouTube

http://drive.google.com/file/d/1D9UC7HWORXkeQmVBx4wrnewAzriAltWh/view


Fast Inference

● Real time response is critical for 
robots

● Forward pass is faster than iteration

● IK is highly non-linear
● AI is well-suited to approximate 

complex mappings

● Numerical methods can fail to 
minimize if improperly seeded

● Redundant robots have infinite IK 
solutions

● Can learn a distribution of solutions

Why is IK suitable for machine learning?
Non-Linear

Addresses RedundancyComplex Objective Function

1. Problem Statement
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Robots To Graphs
How do we model our question as a graph?

2. GGIK Architecture - Dataset Generation



Riemannian Optimization 
for Distance-Geometric 

Inverse Kinematics
Filip Marić, Matthew Giamou, Adam W. 

Hall, Soroush Khoubyarian, Ivan Petrović, 
Jonathan Kelly

IEEE Transactions on Robotics, 2022

2. GGIK Architecture - Dataset Generation



Distance-Geometric 
Representations

1. Place two points along the rotation axis of 
each joint. 

2. For each consecutive pair of joints, 
connect all four points with edges 

3. Let edge weights be the Euclidean 
distance between points

2. GGIK Architecture - Dataset Generation



Input & Output Graphs
A partial graph G̃ represents the 
question/input:

G̃ = Gs∪ Ge

A complete graph G represents 
the answer/output:

G = Gs∪ Ge∪ Gj

2. GGIK Architecture - Dataset Generation



Dataset
Generation
Use forward kinematics to 
generate a dataset:

1. Randomize joints to 
create a configuration  

2. Use forward kinematics 
to calculate the end-
effect position

Define a robot 
structure

Robot is in 
random 

configuration

Randomize joint 
angles

Position and 
orientation 

data

Forward 
kinematics

Create partial 
graph

Create complete 
graph

Repeat for each sample 
in the dataset

2. GGIK Architecture - Dataset Generation



Generative 
Graphical Inverse 

Kinematics
Oliver Limoyo, Filip Marić, Matthew 

Giamou, Petra Alexson, Ivan Petrović, 
Jonathan Kelly

2. GGIK Architecture

IEEE Transactions on Robotics, 2024



Architecture

2. GGIK Architecture

GGIK is described as a Conditional Variational Autoencoder (CVAE)



GNNprior

Partial Graph

Node Features:
● Position
● Type

Edge Features
● Distance

EGNNEGNNEGNNEGNNEGNN

Latent Conditional 
Distribution Parameters

Linear 
Variational 

Autoencoder
(LVAE)

Variances (σ²)

Means (μ)

Mixture Weights (π)

2. GGIK Architecture

Encodes a partial graph into latent space while optimizing the distribution, p𝛾 (Z | G̃)  

Node-Level 
Latent 

Representation 
of G̃



GNNdecoder

EGNNEGNNEGNNEGNNEGNN

Node-Type Feature

2. GGIK Architecture

Decodes a sampled latent vector into G while optimizing the distribution, p𝛾 (G | Z, G̃)  

Node-Level Latent 
Representation of

 G̃
Solution Graph G

C
O

N
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EN
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N

Z Samples (Node 
Vectors)

Joint Angles

Geometric Procedure



GNNencoder

2. GGIK Architecture

Encodes a complete graph into latent space while optimizing the distribution, q𝜙 (Z | G, G̃)  

Latent Conditional 
Distribution Parameters

Linear 
Variational 

Autoencoder
(LVAE) Variance (σ²)

Mean (μ)

Node-Level Latent 
Representation of

 

G̃

Node-Level Latent 
Representation of 

G

C
O

N
C

AT
EN

AT
IO

N



Architecture Revisited

2. GGIK Architecture

GGIK optimizes three conditional latent 
distributions:

● p𝛾 (Z | G̃)   

● p𝛾 (G | Z, G̃)  

● q𝜙 (Z | G, G̃) 



Optimization
The evidence lower bound (ELBO) is used to optimize 

2. GGIK Architecture

Reconstruction: How well a complete 
graph G matches itself after being 
encoded and decoded

KL Divergence: How close the latent 
distribution of a partial graph G̃ and 
complete graph G are

𝜷-Scaling: Gradually increases the weight 
of the KL Divergence term



Inference

The specific solution is dependent on how 
the latent space Z is sampled

● Z is in the form of a Gaussian Mixture 
Model

2. GGIK Architecture

At inference time, a partial graph can generate a distribution of complete graphs 
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The Issue of Distance-Graphs 

When consecutive joints are not coplanar, we 
can no longer uniquely represent a robot

If pv1 replaces pv and edge features include 
distance  
 
Then the geometric graph is no longer unique

3. Improvements



Proposal: Distance-Direction-Graphs 

We propose to add direction to edge features

If pv1 replaces pv and edge features include 
distance and direction vectors 
 
Then the geometric graph is unique

eu,v1

eu,v2

3. Improvements



The problem

Can we enhance GGIK 
to solve for non-

coplanar robots  and 
improve accuracy?

The objective

Determine whether 
attention over the 

direction of graph edges 
will improve accuracy 

on non-coplanar robots.

3. Improvements



What Can We Improve Using Attention?

Learn how to weight messages based on 
direction vectors, capturing orientation 
sensitive relationships 

Instead of treating all edges equally, learn 
which neighbors are relevant, both spatially 
and semantically

Helps focus updates on joints that are aligned 
or structurally important

Directional Awareness

Flexible Influence

Better for Non-Coplanar

3. Improvements



Base Architecture/Changes Phi_E
Base Architecture

Purpose: Generates the raw message that passes through the GNN from one node to another

Inputs: 

• h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place in the structure)

• h_j: Latent feature vector of sending node.

• | |x_i - x_j | |2 : Squared Euclidean distance .

• edge_attr:  Scalar Euclidean distance (| |x_i - x_j | |) (1D)

 
Output:

• m_h_ij : A learned abstract 3 dimensional vector that encodes semantic and relational information between 
the two nodes, one for each edge

Changes:

edge_attr:  Scalar Euclidean distance (| |x_i - x_j | |) (1D) AND Directional Vector (x_j -x_i for (x,y,z)) 

m_h_ij : 64 dimensional vector 

3. Improvements



Base Architecture/Changes Phi_X
Base Architecture

Purpose: Uses the message vector m_h_ij to compute a scalar used to scale 
the directional vector for updating node positions.

Input:  m_h_ij : Message features computed by phi_e. 
Output:  m_x_ij = scalar × (x_j − x_i), equivariant directional update

Changes:

Purpose: Takes the message m_h_ij and the directional vector d_ij = x_j - x_i, and 
learns the geometric update to the node's position.

Inputs: 

• m_h_ij : Message features computed by phi_e.

•  d_ij: Directional Vector (x_j -x_i for (x,y,z)) 

Output:  m_x_ij : still equivariant directional update, but now shaped by the 
joint interaction of the message and the vector geometry

Why?: It’s crucial when the same distance can imply very different directional updates, 
which only happens in non-coplanar cases.

3. Improvements



New! attn_mlp: Attention Scoring Network
Base Architecture

Purpose: Computes a scalar attention weight a_ij for each edge, based on the 
sending/receiving nodes and the edge attributes. This tells the GNN how 
important each message is.

Inputs: 

• h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place 
in the structure)

• h_j: Latent feature vector of sending node.

edge_attr:  Scalar Euclidean distance (| |x_i - x_j | |) (1D) AND Directional Vector (x_j 
-x_i for (x,y,z)) 

Output:

• Scalar attention weights a_ij € [O, 1] normalized per target node via softmax.

• These are used to scale both m_h and m_x, changing how much influence each 
neighbor has.

3. Improvements



Base Architecture/Changes Phi_H
Base Architecture

Purpose: Updates the node's latent embedding (h_i) by combining its current state with the 
aggregated messages (m_h) from its neighbors.

Inputs: 

• h_i: Latent feature vector of receiving node. (node identity, info from neighbors, place in the 
structure)

• m_h:  Aggregated message  
Output:

• new h_i: new latent feature vector, passed to the next GNN layer.

Changes:

m_h:  3D in original, 64 in modified, Also all node messages have same weight in aggregation 
in original, but are attention weighted in modified.

Why?: Neighbors now contribute based on learned relevance, and now have  richer semantic 
and relational encoding

3. Improvements



Flow Overview
For each edge (i <- j):

1. phi_e creates a message m_h_ij.

2. phi_x uses m_h_ij and direction d_ij to get geometric update m_x_ij.

3. attn_mip computes how much to weigh them (a_ij).

4. Both m_h_Ij and m_x_ij are scaled by a_ij.

5. The GNN aggregates these for each node. (Σ_j α_ij m_x_ij and        
Σ_j α_ij m_h_ij) to get m_x and m_h 

6. phi_h fuses h_i with aggregated m_h to update h_i.

7. The node's position x_i is updated via x_i' = x_i + m_x / c (normalized if 
needed).

Important functions:

forward(): receives node positions x, hidden features h, edge 
attributes, and edge indices. Calls propagate(), kicking off the 
message passing. Same in both

propagate(): PyTorch Geometric internal dispatcher. It delegates 
to message(), aggregate(), and update(). Same in both  

message(): Computes messages from each neighbor j → i. 
Uses phi_e, phi_x and attention_mlp which are different in 
modified version. Scales messages with attention in modified.

aggregate(): Collects all messages per node. Attention weighted 
messages in modified version. 

update(): calls phi_h to update h_i and does x_i + m_x / c to 
update x_i

 

3. Improvements
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Experimental Procedure

Trained
GGIK

100 
Sample 

Problems

Compute 
Accuracy 

for Position 
& Rotation

4. Experimental Results



GGIK vs. GGIK+ Training

4. Experimental Results

GGIK (GNN) GGIK (GAT)

Samples 4,096,000 5,120

Epochs 300 50



4. Experimental Results

-34.19%
But with the ability to the solve for non-

coplanar robots!

How does EGAT compare to EGNN? Not Good!



4. Experimental Results

Coplanar vs. Non-Coplanar:
EGNN: 

+15.82%
EGAT: -0.84%



4. Experimental Results

Coplanar vs. Non-Coplanar:
EGNN: +5.40%

EGAT: -4.23%



EGNN 
EGAT: 
Loss 
Curves

4. Experimental Results
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● Attention is likely helping the model 
learn a better latent representation 

● Attention may be hurting the the 
decoding process

● When training on non-coplanar 
data vs. coplanar data:
○ EGNN: +15.82%
○ EGAT: -0.84%

Key Findings
EGNN Handles Non-Coplanar 
Data 

EGAT Reaches a Lower KL 
Divergence Loss

5. Drawing a Conclusion



E(n) Equivariant 
Graph Neural 

Networks
Victor Garcia Satorras, Emiel Hoogeboom, 

Max Welling

arXiv.org, 2022

5. Drawing a Conclusion



Without EGNN this model would fail dramatically

In an equivariant system, a translation of an input will 
produce the identical output translated

The Importance of E(n) 
Equivariance

5. Drawing a Conclusion



GAT, GCN, GNN layers 
perform worse, but may still 
have some value

Concatenate EGNN+GAT/
GCN/GNN

GGIK has been proven to 
respond positively to biased 
data

Bias data towards more 
stable solutions

Take inspiration from 
Cascading “Super-
Resolution” Diffusion models

A cascaded GGIK model 
can use the previous latent 
space as a starting point

Future Work

Concatenate Layer 
Types

Biased Data 
Generation

Cascaded CVAE
For High Precision 

5. Drawing a Conclusion



Institution: University of New Mexico
Course: ST, Advance Machine Learning
Professor: Trilce Estrada

● Relaxed Coplanar Restrictions 

● Quantified Non-Coplanar Dataset 

● Inserted Attention  

● Quantified Attention-Enhanced Model

Thank you!

Calvin Stahoviak
Gabriel Urbaitis
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Types of Datasets
Model-Specific Model-Aggregate Randomized

Dataset Dataset

20 Samples Each
100 Samples

Dataset

1 Sample Each

100 Random 
Robot Structures

Supplemental Slides



VAE vs. CVAE
A conditional variational autoencoder 
learns a distribution conditioned on 
another variable

A variational autoencoder learns a normal 
distribution

Supplemental Slides

p(G | G̃) = ∫ p(G | Z, G̃) p(Z, G̃) dZp(G) = ∫ p(G | Z) p(Z) dZ

Each output is sampled given its input



Distance Geometry Problem (DGP)
DGP asks, what is the location of a set of points given only the edge distances between 
them?

Supplemental Slides

Set of Edges

Set of Node 
PointsDGP 

Solver
Set of Edges

Geometric 
Procedure

Joint Angles

GGIK Output


