

1

Vulnerabilities in WebApplications
In the Scope of WordPress 6.7.x Plugins and Themes

Bennett Poulin

Gabriel Urbaitis

CS544 Intro to CyberSecurity

Dr. Afsah Anwar

May 10, 2025

2
Introduction..3

Problem Statement.. 3
Problem Relevance... 3
Problem Scope.. 4

Method..5
Setting Up Environments... 5

Environment One...5
Environment Two... 6

Execution and Tools...6
Browser Tools.. 6
Programming Languages...6
SQLMap...6
XSStrike... 7
BurpSuite... 7

Challenges..7
Finding Viable Vulnerabilities...7
Unfamiliarity with Modules... 8
WordPress Built in Defenses... 8
Complications in Setup.. 9
Language Barriers... 9
Paywall Barriers...9

Findings..10
TeachPress.. 10
Thumbnail Carousel Slider...11
WooCommerce..12
EZ SQL Reports.. 13

Contributions... 14
Future Work..14
Conclusion... 14

3

Introduction
 Our goal was to study vulnerabilities in web applications. Specifically in the context of the
popular Content Management System (CMS), WordPress. Wordpress is used by millions of
websites, and is an easy way for non-technical people to be able to create and administer web
content. Its popularity has made it a large target for vulnerabilities and exploits. We will study
these exploits, see if any are reproducible, what we can learn from them, and how they can be
mitigated.
 We aim to further explain the susceptibilities we are exploring, their applicability and
landscape. We will demonstrate the kind of breadth and capacity these problems encompass.
We shall also enumerate our approach and why we chose reproducing in a static and safe
environment rather than finding these liabilities in the wild. We will also specify the numerous
difficulties we had in exploring these vulnerabilities. Additionally we intend to discuss any
successes we had in analysis. Finally, we will conclude with the outcomes our findings have led
to in how to better be safe when using the WordPress Software.
 After reading our paper you should have a good idea how to set up a safe testing
environment to conduct your own research. We will describe our process of finding
vulnerabilities such as reflected XSS and SQL Injection. Additionally we will discuss in great
detail common complications we encountered such as missing plugins, barriers to using found
plugins and WordPress’ built-in defenses. Finally we’ll relay our successful testing of exploits
that you can try yourselves.

Problem Statement
Despite WordPress Core being relatively secure, its third-party plugins introduce a vast

attack surface. Many of these plugins are developed with little supervision, inconsistent coding
standards, and poor documentation, leading to a high volume of vulnerabilities such as
Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and SQL Injection. The
problem is worsened by the fact that many site administrators install plugins with barely any
vetting, which leaves their sites exposed to attacks that can compromise data, users, or even
full system control. Our goal is to assess whether these vulnerabilities are reproducible in a
controlled environment, evaluate how they can be chained or escalated, and understand the
limitations of WordPress’s built-in defenses.

Problem Relevance
 WordPress is easily the most popular CMS out there today. Being free to install and
open-source adds to its following. WordPress boasts being the backbone for over a third of the
internet “It is also the platform of choice for over 43% of all sites across the web” (WordPress,
n.d.). Even if their claim is only partially correct, that’s still millions and millions of sites across
the internet. This prevalence definitely makes it a more ripe target for malactors on the web.
 Of this multitude of sites using a WordPress backbone are numerous prominent ones.
Many governments, large corporations, and universities use WordPress in some fashion.

4
Whitehouse.gov, state.gov, and nasa.gov are all WordPress sites. Corporations such as Walt
Disney and Sony use WordPress in some of their public facing sites. The New York Times uses
WP for their press site, not the newspaper site. Harvard University uses WP for their main site.
MIT, Stanford, Cornell, and Princeton utilize WordPress for various student and departmental
websites. The University of New Mexico uses WordPress for its Press site
https://www.unmpress.com/. With this many targets all on one platform it is easy to see why
attackers would choose this application to focus their efforts on.

Problem Scope
 There are many sites that disseminate information on WordPress and its security
statuses. We used solidwp.com to gather some statistics concerning the magnitude of
vulnerabilities in WordPress (SolidWP, 2025). Solidwp.com puts out a weekly list of disclosed
vulnerabilities in three sections: core, plugins, and themes. Each vulnerability lists the affected
section, the Vulnerability Type, the Severity Score (low to critical,) and a link to the associated
CVE. Plugins and themes that haven’t been removed by WordPress will also include a link to
the wordpress.org page of the listed plugin or theme.
 By scraping the website for 52 weeks worth of data between 2025-01-01 and
2025-01-10 we found 9496 individual vulnerabilities. Impressively only 6 of these citations were
attributed to the Section core. This can be interpreted that the core of WordPress is more peer
reviewed and inspected before its release. The following chart shows that severity scores were
distributed in such a way that Critical and High scores shared more than a third.

Low scores were the least represented with half a percentile. Similarly for Sections, plugins
were about ninety six percent of the reported vulnerabilities, and themes took most of the

https://www.unmpress.com/

5
remaining numbers. The largest Vulnerability Type by number of incidents was by far Cross Site
Scripting (XSS) with 4554 incidents. Broken Access control, Cross Site Request Forgery
(CSRF), and SQL Injection were the next most prevalent respectively. With almost twelve and
half vulnerabilities being reported daily on average, one can exactly see the immensity and
pervasiveness of the problem.

Method
 To avoid any potential legal or morality issues our study was limited to previously
disclosed vulnerabilities being studied in a closed and controlled environment. The following
sections will enumerate setting up our environments, how we tested the vulnerabilities, and
what approaches and tools were used. Outlining our process in such a way that we intend our
efforts to be reproducible depending on the availability of the afflicted softwares in their
unaltered form.

Setting Up Environments
 The two researchers each used their own environments with strikingly similar structures.
One used an ARM computer as the attacker and an AWS Virtual Machine (VM) running Ubuntu
as the web server. The second setup used two VMs administered by VirtualBox, one as the
attacker and the other as the web server. By utilizing the two environments we were able to
probe twice the number of plugins and themes.

Environment One
Environment One used a two-host architecture combining a local attacker machine with

a cloud-hosted WordPress server. The attacker machine was a MacBook running macOS 14 on
Apple Silicon. It was used to serve malicious HTML pages, monitor traffic using browser
developer tools, and replay HTTP requests with command-line tools like curl and wget. For
CSRF testing, a simple Python web server (python3 -m http.server 8000) was used to host
created payloads locally. The browser-based testing environment provided insight into
cross-origin behavior, session cookies, redirect behavior, and frame-related security headers.

The target machine was an AWS EC2 instance running Ubuntu 22.04 LTS. This instance
hosted the WordPress installation and was publicly accessible via its assigned Elastic IP. The
server was configured with Apache, PHP 8.1, and MariaDB, and hardened using
mysql_secure_installation and UFW rules to allow only HTTP and HTTPS traffic. WordPress
was manually installed in /srv/www/wordpress, and its file permissions were configured for
compatibility with the web server. Several vulnerable plugins were installed manually from .zip
archives due to write permission issues affecting WP-CLI. These included teachPress
(CVE-2025-1320), GlobalPayments WooCommerce (CVE-2025-22767), and EZ SQL Reports
(CVE-2025-2319). This setup replicated a plausible production-like WordPress environment
while allowing full control and logging access for vulnerability testing.

6
Environment Two
 The second environment used two Virtual Machines with VirtualBox to administer them.
The first VM was the attacker. Kali Linux was chosen for the attacker’s machine’s Operating
System as it comes preloaded with many useful tools and capabilities. The VM specific for
VirtualBox is available on their website kali.org. Additional tools such as XSStrike were added
as needed, but they were few and far between. A Natted Network was added in VirtualBox so
the two machines could communicate.
 The web server was built on Fedora Workstation 41. This image was chosen for
convenience and similarity to the RedHat Enterprise Linux (RHEL) environment. Apache was
installed and enabled and the firewall was punched through to allow for both HTTP and HTTPS.
PHP version 8.3 and its dependencies were then installed as well as mariadb-server which is
MySQL’s free clone spinoff. The software binary mysql_secure_installation was then run to
perform the initial hardening of the Database Management System (DBMS).
 On top of this second VM, the web server, WordPress was installed. Fedora has some
excellent documentation on the process (Fedora Project, 2024). Basically WordPress core was
downloaded and extracted to the web server’s root. A database was created in the MySQL
clone. At this point one can complete the installation by navigating to the localhost in the
browser and following the on screen instructions, plugging in the values for the database name,
user, and password.

Execution and Tools

Browser Tools
We used built-in developer tools in Firefox and Chrome to inspect forms, monitor

network requests, and verify whether CSRF and XSS attempts were actually triggering the
expected behavior. This helped us confirm when POST requests went out or when injected
scripts were reflected or blocked.

Programming Languages
We used HTML and JavaScript to build test pages for CSRF and XSS attacks. We also

used Python to run a lightweight local web server, which made it easy to serve these files locally
while testing as an authenticated admin. The setup allowed us to test our attacks in a controlled
environment without uploading anything directly to the WordPress server.

SQLMap
SQLMap is a tool for automating probing for possible SQL Injection vulnerabilities. This

tool was incredibly useful to our efforts. It is conveniently included in the kali linux image for
VirtualBox. According to sqlmap.org

It comes with a powerful detection engine, many niche features for the ultimate
penetration tester and a broad range of switches lasting from database fingerprinting,
over data fetching from the database, to accessing the underlying file system and

http://sqlmap.org

7
executing commands on the operating system via out-of-band connections. (SQLMap,
n.d.).

Using the tool was incredibly easy and aided in being able to determine if a plugin had a viable
exploit without having to spend massive amounts of time crafting individual payloads. Providing
credentials was easy for attacks that required authenticated users. It took a long time to run
depending on the set depth parameter, but it consistently provided an incredible amount of
information.

XSStrike
 XSStrike was not included in the Kali Linux VM, but installing was a simple git clone
command with an installation of an included python environment. It was similar to SQLMap in
that it was a command line tool which then pointed to a web server to try and find vulnerabilities,
but differed in some key aspects. Including credentials such as cookies required editing a file
every time as it could not read from a stored file inexplicably. The tool would bring up a nano
instance during the command runtime and you would have to paste and save your key or
cookie, which became tedious rapidly. Adding headers and post payloads to the attack was also
exhausting. Many forms needed files in order to validate and process correctly. This required
adding the binary to the command line command as an argument, which was messy at best.

BurpSuite
BurpSuite was the Swiss Army knife of pentesting tools. Its proxy allows for capturing of

data passing to and from the web server with ease. The repeater functionality aided crafting an
attack payload and refining it slowly without having to reset everything everytime. URL encoding
is an important aspect to testing these vulnerabilities. BurpSuite had this service available
ensuite, with keyboard shortcuts for added ease. Mapping an entire site, listing all the pages
and html forms is just the click of a few buttons. BurpSuite was by far the most useful tool we
found in our exploration of these vulnerable plugins and themes.

Challenges
 Despite using vulnerabilities that were previously disclosed, we faced many challenges
in our exploration. A good portion of plugins and themes were no longer available and had been
scrubbed from the wordpress.org website. Each of the available plugins and themes came with
its own learning curve as to its administration and functionality. Though some plugins and
themes had vulnerable code, many were not viable due to WordPress’ built-in defenses.
Barriers such as language and paywall also kept us from exploring many of the vulnerabilities
listed. We will discuss each of these complications further in the following sections.

Finding Viable Vulnerabilities
To find good vulnerabilities to test, we went through recent CVEs listed on sites like

SolidWP and cve.org. We looked for plugins with known issues like CSRF, XSS and SQL

http://wordpress.org

8
injection, and checked if they still had downloadable versions available. Some plugins were
removed or locked behind licenses, so just finding one we could actually test was its own
challenge.

Unfamiliarity with Modules
 WordPress administrators and content managers generally work with a few sets of
modules and become fairly familiar with them over a period of time. We did not have that luxury.
Every plugin we were to investigate was a crash course in learning a new software set. Akin to
the first time one sees Microsoft's Excel worksheet. Aiding to this difficulty is a lack of conformity
for plugins, poor documentation, and lack of consistency. Each of these individually is
surmountable, together they added significant time to the project that we did not have. It was a
real gamble to see which plugins and themes would pay off in our research.

 There seemed little rhyme or reason to how new plugins were displayed, the interface to
administer them, or how they were implemented on the site. Some plugins would add a menu
item to the sidebar, and some would add them to the top navigation. Still others would do
neither and only add themselves to the general plugin administration menu.

Finding out how to use the plugin once you found its location was another laborious task.
A number of plugins would show complex forms and cryptic checkboxes and radio buttons with
little explanation for what they did. Others had very little in the way of customization or
administration.

Documentation for these plugins was as hit or miss as the administration interfaces.
Most plugins had some form of documentation on the WordPress.org site, but some were just a
few paragraphs and very few were detailed with useful instructions. Finding good
documentation went a long way to actually letting us see if an attack was going to be viable or
not.

Once a module was customized to expose the possible attack vector, it had to be
implemented on the site somehow. WordPress uses shortcodes in the form of
[short_code_name] on the page’s wysiwyg in order to display some predefined code snippet or
functionality. You could select from a long list of these shortcodes, but it was difficult at best for
us novices to choose the correct plugin functionality from a large list of just names. Again, the
documentation was irregular. Some would list their shortcodes, how to use them, and what they
did, while others simply did not.

In short, being completely unfamiliar with each plugin we were trying to use led to harsh
difficulties and extreme delays. The modules themselves were inconsistent in the manner of
display and application. The documentation was either sparse or brilliant and may or may not
have included how to utilize the plugin or theme in the site with shortcodes. All these factors
took time away from actually testing the vulnerabilities and were the majority of the learning
process in each angle of attack explored.

WordPress Built in Defenses
WordPress uses things like nonces and session checks to stop fake requests, which

made our CSRF attacks harder. Even when we copied how the real forms looked, they didn’t

9
work unless the right token (nonce) was there. We also noticed that WordPress blocks its login
page from loading in iframes, which made silent CSRF attacks trickier to track.

Although the tools we used found many vulnerabilities, crafting viable payloads
remained difficult. For example, several XSS vulnerabilities were found by XSStrike, though they
could not produce any vectors that were usable, and neither could we. Some of the SQL
Injections we found would be passed directly to the database as per the code… but in practice
did not behave that way. Though not explicitly stated these appeared to be the actions of
WordPress parameterizing queries and stripping script tags independent of the module code.
Why some modules we investigated were affected by this behaviour and not others remains an
interesting topic and will be explored in future work.

Complications in Setup
One of the biggest problems we ran into was getting the right plugin versions. Most of

the recent versions of the plugins were already patched, so we had to search for older releases
that still had the vulnerabilities. Sometimes there were no clear download links, so we had to dig
through archives. Even when we managed to download what we thought were vulnerable
versions, some of them had already been patched too, which made testing unreliable and more
time-consuming.

Language Barriers

Technology has aided greatly in global communication and understanding. Nevertheless,
language and translation barriers remained an issue in our research. Translation tools can still
only go so far, especially when the subject matter is unfamiliar even when presented in one’s
native tongue.

One example of this was our investigation of the WPCOM Member plugin containing a
severity score of Critical. The CVE for this plugin told us exactly which field was vulnerable to
SQL Injection. Installing the plugin using the slug was no problem and the codebase was even
in english. However, the admin interface was all in Chinese Hanzi characters. We turned to the
documentation to see if it could help us administer the plugin to find that it was also in Hanzi.
We used several translation sites, including Firefox's built-in page translation. That allowed us to
progress a little, but we were ultimately unsuccessful in finding the endpoint with the vulnerable
form field.

Paywall Barriers
While WordPress is free, that isn’t necessarily true for its extensions. Any plugin can

charge a fee for use and many have a model that distributes a freemium version with a premium
upgrade. While these pay plugins were easy enough to avoid as the initial vulnerable plugin –
due to the complications outlined in the Unfamiliarity with Modules – it was less easy to identify
paid plugins as a dependency for a different plugin that we were investigating.

10
One example of this difficulty was exploring the WP-Recall plugin. This plugin seemed to

claim being a one-stop shop for registration and ecommerce needs. Four CVEs were listed on
the March 12, 2025 vulnerabilities report from solidwp.com (SolidWP, 2025) ranging from
Broken Access Control to SQL Injection and XSS. One of these was lack of validation for
members registering with a phone number.

With the aid of another (paid) plugin, this module could log users in using SMS
messages. The plugin had a recurrent cost of fifty dollars. The idea was that if an attacker knew
the phone number of an admin user, they could register a new account with the same phone
number. Logging in with the SMS option would give both the previous account and the new one
Admin privileges, elevating the new account of the attacker. We were unfortunately not able to
test this further since the SMS login plugins we found all cost money.

Findings
We looked at a few WordPress plugins with known problems to see if we could get the

attacks to work ourselves. The ones we tried were TeachPress, Thumbnail Carousel Slider,
GlobalPayments WooCommerce, and EZ SQL Reports. Some of the attacks worked, and some
didn’t, but each one helped us learn more about how these kinds of exploits show up in real
websites.

TeachPress
TeachPress is a plugin designed for academic use. It handles publications, courses, and

student registration, and is often used in university websites. It appeared on SolidWP’s
vulnerability list for April 2025 with a medium-severity CSRF vulnerability (CVE-2025-1320).

This vulnerability listing gave us a clear starting point. According to the advisory, the
plugin allowed arbitrary actions to be performed by an authenticated administrator if they were
tricked into clicking a malicious link. This is the textbook definition of a Cross-Site Request
Forgery (CSRF). We gathered more data by inspecting the plugin source code and quickly
identified several areas of functionality—most notably, SQL report creation—where user input
was processed without nonce validation.
 After setting up the plugin on a vulnerable WordPress instance, we created a malicious
HTML file (csrf.html) with a hidden form that would auto-submit when the page loaded. This
form sent a POST request to admin.php?page=elisqlreports&action=save, mimicking the format
of legitimate report creation requests. It included parameters like report_name, query, and a
hidden submit value.

 After opening the file while logged in as an admin, we were able to confirm that
the request went through and the new report appeared in the plugin interface. All of these
reports were created without further user interaction, verifying that the CSRF was successful.

However, we were not able to chain this attack with others, like the XSS in
GlobalPayments WooCommerce, because the teachPress plugin relied on a WordPress nonce
(tp_nonce) for most sensitive actions. We attempted to steal this token through a stored XSS,
but we couldn’t reach the correct settings page due to permission restrictions.

11
 This shows that while CSRF was exploitable in isolation, chaining it required

access to or leakage of a valid nonce, which is something that WordPress tries hard to protect.
We learned that many plugins only protect high-risk operations and forget to secure
lower-visibility features like report generation, which still carry real risks in the hands of a
determined attacker.

Thumbnail Carousel Slider
Carousels and sliders are web components that rotate through images and usually have

controls for selecting the next image or stopping progression. Carousels have lost some
popularity in recent years due to poor user experience and accessibility issues (ACS Creative,
2025). The plugin Thumbnail Carousel Slider (TCS) is one of the available WordPress plugins
found on the list of vulnerabilities listed on solidwp.com’s vulnerability list for March 19, 2025.
 This vulnerability listing gave us valuable information and we investigated using the
procedure outlined in the Method section of this paper. TCS was listed as a SQL Injection and
given a Severity Score of High. Following the linked CVE to cve.org we gathered more data
about the exposure. Cve.org listed the specific parameter we were looking for, but nothing about
how the module worked, or which form/page the parameter was attached to.
 After some trial and error we were able to get a vulnerable version of the plugin installed
and enabled. Then creating several sliders we noticed a few that used the GET parameter ‘id’.
All of these forms were located in the admin interface and were not public facing despite the
CVE stating otherwise “This makes it possible for unauthenticated attackers to append
additional SQL queries into already existing queries that can be used to extract sensitive
information from the database (CVE, 2025).” While there may have been a public facing aspect
to the vulnerability, all attempts we published did not expose a matching GET parameter.
 The CVE pointed us to the direct line of code where the vulnerability was visible. You
could in fact see the GET parameter being passed directly into the query. In the following figure
you can see the plugin get the GET parameter on line 1326.

The next line, 1327 the id is being put into the query without any validation whatsoever. This is
exactly the kind of mistake that a novice developer will make. Without any kind verification on

https://solidwp.com/blog/wordpress-vulnerability-report-march-19-2025/#h-thumbnail-carousel-slider
https://www.cve.org/CVERecord?id=CVE-2019-25222

12
WordPress’ end as to the kind and quality of plugins that the community provides, it’s up to
independent researchers to find and disclose this kind of vulnerability.
 After collecting related information and exploring the modules functionality we continued
the exploration. We pointed the SQLMap tool at our server. We needed to provide a cookie
since all areas with the parameter ID were restricted to users with the content editors role. This
limits the scope of exposure and reduces the risk to persons already trusted unless chained with
another vulnerability such as broken access control. SQLMap used nearly twenty four thousand
queries on our testing server and was able to locate and identify the vulnerability as shown in
the following figure.

 Once the vulnerability was confirmed, we turned on MySQL’s native logging so we
wouldn’t have to try and figure out printing the queries to the page. Tailing the logs we were able
to see every transaction between the browser requests and the database. Passing the following
URL to the browser:
http://192.168.1.4/wp-admin/admin.php?page=responsive_thumbnail_slider_image_ma
nagement&action=addedit&id=3' OR 1=1; UPDATE wp_options SET option_value =
'Vulnerable' WHERE option_name = 'siteurl' LIMIT 1; --

We were able to see this output in the database logs: 15 Query SELECT * FROM
wp_responsive_thumbnail_slider WHERE id=3' OR 1=1; UPDATE wp_options SET
option_value = 'Vulnerable' WHERE option_name = 'siteurl' LIMIT 1; --

However, despite this query displaying in the logs, we were unable to make any real changes to
the database. This was most likely due to WordPress’ built in security features not allowing
multiple queries with parameterized queries covered in the challenges section of this paper.

WooCommerce
WooCommerce is one of the most widely used plugins for WordPress and serves as the

foundation for many of the ecommerce sites built with the platform. Given its importance, we
wanted to see if any related plugins had serious vulnerabilities that we could explore. We came
across a plugin titled GlobalPayments WooCommerce, which had a known stored XSS
vulnerability listed under CVE-2025-22767. According to the listing, the plugin did not properly
sanitize or escape user input in certain payment method fields. This kind of vulnerability is
dangerous because if JavaScript can be injected into these fields, it could execute in the
browser of any admin or user who later views the page.

After finding the vulnerability listing, we downloaded an older, vulnerable version of the
plugin and installed it on our WordPress test server. We began by exploring the plugin’s various
settings and inputs, particularly the GlobalPayments options that are exposed through the
WooCommerce payment methods interface. We attempted to inject payloads like
<script>alert(1)</script> into these fields in places like payment method names, descriptions, or

13
metadata inputs. However, one of the first challenges was that most of the GlobalPayments
payment types were disabled by default and required additional setup. In many cases, the
plugin blocked access to those pages entirely unless a valid license key was provided. This
severely limited our ability to reach and test the inputs we were targeting.

We were able to get the script tags to save into some fields, and when we manually
visited the WooCommerce settings page after saving, the script appeared in the HTML. But it
did not execute. This suggested that either WordPress or the plugin was escaping the tags upon
rendering or that the specific DOM location was not sensitive to script injection. So, while the
stored XSS was technically present (and we could see the payload in the page source), we
were unable to cause script execution in the admin interface.

The main takeaway from this attempt was that while the vulnerability exists and user
input is not being properly escaped in some cases, exploitation depends heavily on the
rendering context. We learned that for stored XSS to be practically exploitable, it is not enough
to inject the script—it must also be rendered in a way that triggers execution. This effort also
showed us the barriers posed by paid or restricted plugin features, which sometimes prevent full
testing unless a license is purchased or circumvented. Even with partial access, we were able to
validate some aspects of the vulnerability, though a full exploit chain (such as using the XSS to
steal a CSRF nonce from another plugin) was not possible under these conditions.

EZ SQL Reports
EZ SQL Reports is a plugin that allows WordPress administrators to write and save

custom SQL queries from inside the admin interface. This sounded like an ideal target for CSRF
testing since it involves arbitrary database queries, which could be dangerous if an attacker
could trick an admin into saving one.

The vulnerability listing for this plugin indicated that CSRF was possible when creating or
saving reports. We used that information as our starting point. After installing the plugin and
exploring its interface, we found the form used to save new reports. We confirmed that this form
did not include a nonce or CSRF token. That gave us a potential opening.

We created a standalone HTML page containing a hidden form. This form
auto-submitted the malicious query, “SELECT user_login, user_email FROM wp_users,” to the
report creation endpoint, simulating a CSRF attack. While logged in as an admin, we clicked the
page locally and observed the form submission through browser developer tools. We saw a
POST request go out and received a 302 redirect in response, which usually signals success or
rejection followed by a login check.

After some trial and error, we confirmed that the report was being created when we
visited the CSRF page while authenticated. However, it only worked when the admin actually
visited the page. It wasn’t a blind CSRF. This meant we couldn’t chain it with other vulnerabilities
like stored XSS to automatically execute the CSRF. We also learned that WordPress’
X-Frame-Options setting blocked the login page from loading in our iframe, which made quiet
background redirects more difficult to track.

In the end, we confirmed that EZ SQL Reports is vulnerable to CSRF, but only in a
limited way: the admin must be logged in and must visit a malicious link. Still, this is a realistic
threat model, especially when paired with phishing or other forms of social engineering.

14

Contributions
 We reproduced several real-word plugin vulnerabilities in a safe environment, including
working CSRF and SQL Injection attacks. WE showed how even outdated plugins still pose a
risk if they skip nonce checks or rely on admin clicks. Our approach, using CVE listings,
archived plugin versions and simple tools, made these tests reproducible for others interested in
this research.
 We also tested ways to chain attacks, like combining XSS and CSRF and learned that
it’s harder than one may assume. Even though we couldn’t exploit everything fully, we
documented what stopped us, including updated plugins, missing tokens, or WordPress
headers that block risky behavior. This helped show where defenses succeed and where some
plugins still need to improve.

Future Work
 There were still a lot of plugins we didn’t get to try. Some needed payment, didn’t have
older versions available, or just broke when we tried to install them. We stuck to what worked,
but there’s definitely more ground to cover. Future work could mean setting up a larger testbed,
maybe with premium plugins or known dependency chains, to see if we can trigger more
advanced or chained attacks. A more complete setup might also help test real-world scenarios,
like what happens when multiple weak plugins interact.

We also didn’t do much with automation or custom tools. Writing a scanner to flag
missing nonces or insecure patterns in plugin code would speed things up and help catch
low-hanging fruit early. Another direction might be trying to recreate more realistic user behavior,
leaving tabs open, flipping between admin pages, to see if session-based or timing-sensitive
attacks work better. Lastly, while we focused on local testing, finding vulnerabilities in the wild
might have more practical use. But ethics and legality would definitely come into play there, so
that would have to be approached with caution and proper disclosure.

Another aspect of focus for future work should be a stronger analysis of WordPress’ core
defense functionalities and why some modules with vulnerable code were not experiencing the
effects of these vulnerabilities while others were. Deep diving into exactly what the core
defenses do, how they behave independent of module code, and which vulnerabilities are not
covered would be an attractive area for future study.

Conclusion
While we have shown that the problem of web application security, even when limited to

WordPress, is large and attacks are ever advancing, it is possible to be reasonably safe in
administering a WordPress website. While there is no such thing as a completely safe system
these are some steps you can take to help to reduce risk and exposure from common

15
vulnerabilities that affect WordPress Installations. The following suggestions are a minimum and
in no way guarantee a safe instance; however, they are highly recommended.

First to consider is the environment. For shared hosting or publication websites such as
Squarespace or Wix many of these considerations have been made for you. Whole papers have
been written on this subject so we will only cover a short list and you are encouraged to study
the subject yourself before hosting any publicly accessible server. In self hosted web servers
you need to be able to make sure that you’re using up to date applications to not introduce
vulnerabilities at the foundation. If you’re using MySQL as your platform database management
system, ensure that you run the mysql_secure_installation binary to perform the basics of
hardening (Oracle, 2025). Additionally, ensure the principles of least privilege between
databases, users, and applications; set connection error limits; rename root; and disable load
data local infile (Bellon, 2024).

WordPress has taken a lot of measures to ensure that Core is as secure as possible.
Once you branch out into publicly coded themes and plugins provided by the community you
are exposed to less strict and rigorous coding standards. WordPress has some built in security
measures to save you from the naive developer, but as we’ve shown these are not always fool
proof methods. If you venture out into the extensible landscape of WordPress to enhance the
look and feel of your site, guard your site users by vetting each theme and plugin individually.
Traveling to sites such as https://solidwp.com/blog/category/wordpress-vulnerability-report/ and
https://www.cve.org and search for the specific plugin or theme. Slugs are shorthand machine
friendly titles that can better help you search for known vulnerabilities.

Each plugin or theme listed on wordpress.org is also likely to have an associated page,
in the form of wordpress.org/category/slug for example:
https://wordpress.org/plugins/embed-lottie-player/. These pages often have valuable information
on the extensions installation, functionality, and development history. Reading the changelog
listed there is a good way to get a sense of the author’s knowledge, past vulnerabilities, how
active the development is, and what features are more established. It is also recommended to
do general search engine queries to see what additional information is available to you before
you install and enable.

Above all else, update often. Updates can break site functionality creating a hardship for
both end users and site owners. This can lead to tendencies for delay updating until the
changes have been thoroughly tested. This crucial vulnerable time is a window for the entire
internet to analyze publicly disclosed vulnerabilities and exploit them. By updating often you can
minimize the exposure of these timeframes.

By performing the above steps and staying vigilant you can significantly reduce the risk
of your WordPress installations. Again, no publicly available system is ever completely secure.
However reducing your risk is paramount to having a good user experience for both your
patrons and administrators.

https://solidwp.com/blog/category/wordpress-vulnerability-report/
https://www.cve.org
http://wordpress.org/category/slug
https://wordpress.org/plugins/embed-lottie-player/

16

References

ACS Creative. (2025, February 12). Why the Homepage Carousel Trend is Falling Out of Favor

in 2025. ACS Creative. Retrieved May 3, 2025, from

https://www.acscreative.com/insights/why-the-homepage-carousel-trend-is-falling-out-of-

favor-in-2025/

Bellon, A. (2024, 1 6). Computer Security Hardening. sysnet.ucsd.edu. Retrieved May 3, 2025,

from https://www.sysnet.ucsd.edu/~abellon/brain/computer/security/hardening

CVE. (2025, 03 15). CVE-2019-25222. CVE.ORG. Retrieved 5 3, 2025, from

https://www.cve.org/CVERecord?id=CVE-2019-25222

Fedora Project. (2024, January 14). Installing Wordpress CMS :: Fedora Docs. Fedora

Documentation. Retrieved May 4, 2025, from

https://docs.fedoraproject.org/en-US/fedora-server/tutorials/wordpress-installation/

Firefox DevTools User Docs — Firefox Source Docs documentation. (n.d.). Firefox Source

Docs. Retrieved April 12, 2025, from

https://firefox-source-docs.mozilla.org/devtools-user/

Oracle. (2025). MySQL :: MySQL 8.4 Reference Manual :: 6.4.2 mysql_secure_installation —

Improve MySQL Installation Security. MySQL :: Developer Zone. Retrieved May 3, 2025,

from https://dev.mysql.com/doc/refman/8.4/en/mysql-secure-installation.html

SolidWP. (2025, March 12). wordpress-vulnerability-report-march-12-2025. SolidWP. Retrieved

May 4, 2025, from

https://solidwp.com/blog/wordpress-vulnerability-report-march-12-2025/#h-wp-recall-regi

stration-profile-commerce-more

SolidWP. (2025, April 30). WordPress Vulnerability Report. SolidWP. Retrieved May 5, 2025,

from https://solidwp.com/blog/category/wordpress-vulnerability-report/

17
SQLMap. (n.d.). Introduction. sqlmap: automatic SQL injection and database takeover tool.

Retrieved May 10, 2025, from https://sqlmap.org/

WordPress. (n.d.). About – WordPress.org. WordPress.org. Retrieved May 4, 2025, from

https://wordpress.org/about/

	Vulnerabilities in WebApplications
	
	Introduction
	Problem Statement
	Problem Relevance
	Problem Scope

	Method
	Setting Up Environments
	Environment One
	Environment Two

	Execution and Tools
	Browser Tools
	Programming Languages
	SQLMap
	XSStrike
	BurpSuite

	Challenges
	Finding Viable Vulnerabilities
	Unfamiliarity with Modules
	WordPress Built in Defenses
	Complications in Setup
	Language Barriers​
	Paywall Barriers

	Findings
	TeachPress
	Thumbnail Carousel Slider
	WooCommerce
	EZ SQL Reports

	Contributions
	Future Work
	Conclusion

