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Abstract—Inverse kinematics is critical in almost all robotics
tasks. Although it has been extensively researched, the increasing
complexity of robot kinematic structures requires equally com-
plex solutions. Numerical methods currently dominate this space
for most manipulators, however, learned methods have slowly
become comparable in speed and accuracy. This paper presents a
modified version of the Generative Graphical Inverse Kinematics
(GGIK) framework, called GGIK+1, which addresses its limita-
tions in handling joint structures with non-coplanar rotation axes.
GGIK+ introduces attention-based message passing, directional
edge vectors, and expanded node feature representations. These
additions are intended to help the model better prioritize impor-
tant joints and capture spatial layout more effectively. However,
even with the added features, GGIK+ did not outperform the
base GGIK model. Notably, improvements were found in the
base GGIK architecture when trained on non-coplanar data.

Index Terms—Inverse kinematics, robotics, graph neural net-
works, self-attention, distance geometry

I. INTRODUCTION

C ONTROL over the position and orientation of an end-
effector is one of, if not the most critical capability for a

robot. In addition, knowledge of the position and orientation of
the end-effector can be necessary as well. A multitude of tasks,
including manipulation [1], [2], [3], grasping [4], transport
[5], human-robot interaction [6], surgical robotics [7], [8],
etc. would be impossible to perform without this capability.
The latter, knowledge of the end-effector pose, can be readily
solved for using forward kinematics. Forward kinematics is the
process of calculating the end-effectors pose given the joint
angles and a description of the robot’s kinematic structure.
This can be framed as a problem of translating the robot
from joint angle space to Cartesian space (or work space)
[9]. Less trivial is the inverse, calculating the necessary joint
angles for a desired end-effector pose. This is known as
the inverse kinematics (IK) problem and can be framed as
a translation from Cartesian space to joint space [9]. IK is
a famously nuanced problem with many common struggles
regardless of the approach taken to solve it. Manipulators
with just 6 degrees-of-freedom (DOF) can have at most 16
valid solutions, manipulators with more than 6-DOF have an
infinite solution set. Singularities also occur in configurations
where the manipulator looses a DOF, which happens whenever
rotation axes become aligned. Numerical methods may also
not converge to a solution if they are improperly seeded
and fall into a local minimum that isn’t representative of the
solution. Finally IK solvers are sensitive to the allotted time

1[Online]. Available: https://github.com/cjstahoviak/generative-graphik
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pṽ1

pṽ2
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eũ,ṽ2

Fig. 1: A diagram that illustrates the issue of chiral-
ity, non-uniqueness, and the proposed solution (in pink).
For non-coplanar pairs of nodes, (pu,pũ,pv,pṽ1) and
(pu,pũ,pv,pṽ2), the set of edge distances between these
nodes is identical and thus their distance-graphs are identical.
This is addressed by not only formulating a distance-graph
using distances but also including the eũ,ṽ1 and eũ,ṽ2

direction
vectors for all edges.

for calculation, more time can yield a more accurate result but
is not always available in real-time systems.

Currently, FK and IK have established methods for finding
a solution. For FK, the position and orientation of the end-
effector of a manipulator with n joints can be calculated as:

0Tn =0 T1 ·1 T2 ·2 T3 · . . . ·n−1 Tn (1)

where 0Tn is the homogeneous transformation matrix that
describes the end-effector frame relative to the base frame
and i−1Ti is the homogeneous transformation matrix that
describes the transformation from frame i − 1 to frame i, in
this case, from joint i−1 to joint i. In this form, transformation
matrices are commonly represented using Denavit-Hartenberg
(DH) parameters [16]. The final solution produces a transfor-
mation matrix, 0Tn, in the following form:

0Tn(θ) =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (2)

where θ is the set of joint angles, R = [rij ] is a rotation matrix
that describes the orientation, and vector p = [px, py, pz]

T



Author(s) Runtime Manipulator Type Base Architecture

Daya (2010) [10] – 2R, Planar MLP MoE
Duka (2014) [11] – 3R, Planar MLP
Bensadoun et al. (2022) [12] 0.0070 4 DOF, Spatial MLP Hypernetwork
Lu et al. (2022) [13] 0.0218 6 DOF, Spatial MLP
Stephan et al. (2023) [14] – Multi-DOF, Spatial MLP
Limoyo et al. (2025) [15] < 0.001 Generalizable, Spatial EGNN+CVAE

TABLE I: A comparative summary of IK solutions in related literature. Accuracy is not listed a statistic for these papers since
almost every paper had their own metric for calculating accuracy. The “generalizable” term in the Manipulator Type expresses
that a single model works on all robots. “Multi-DOF” expresses that the model can work on any DOF robot, but model needs
to be trained for each one. The most impressive results are found to be from Generative Graph Inverse Kinematics, Limoyo
et al. (2025).

describes the position of the end-effector relative to the base
frame.

IK is solved by either the numerical method or the ana-
lytical method. Analytical methods calculate a complete set
of exact solutions using an algebraic formula. They benefit
particularly in having fast, constant runtime, the ability find the
whole solution set, and are deterministic algorithms. However,
they come with some burdensome limitations. The manipulator
must satisfy certain conditions such as Pieper’s three adjacent
axes intersect for a 6-DOF wrist [17], inability to solve for
> 6-DOF manipulators where the solution set is infinite, and
no handling for joint limits or collision avoidance. These limi-
tations can exclude most commercial manipulators from being
applicable and warrant using a numerical method instead. In
contrast, numerical methods use a “guess” configuration of
the manipulator, and iteratively approach the desired pose.
Because of this, numerical methods can only ever find a
single solution at a time. However, there is no guarantee of
convergence, and may get trapped in a local minimum. The
iterative nature of numerical methods causes computation time
to be significantly slower, especially where high accuracy is
requested. The current state-of-the-art (SOTA) in numerical
IK solving is TRAC-IK which combines sequential quadratic
programming and randomized gradient descent optimization
techniques [18].

The relationship between the joint angles and end-effector
can be highly non-linear, especially as the DOF of the manip-
ulator arm increases. For many years now, machine learning
models have shown to be able to quickly and accurately
estimate complex non-linear relationships given a large enough
dataset [19]. As discussed in section II, prior work has
attempted to use machine learning to solve IK problems with
varying success. These attempts often have major weaknesses,
such as high inaccuracies, the inability to account for multiple
or infinite solutions, and a lack of generalization (models only
work on specific manipulators). This study explores a model
that has overcome each of those obstacles.

This study investigates generative graphical inverse kine-
matics (GGIK), a robust architecture designed to solve the
IK problem and address its limitations [15]. GGIK strictly
concerns itself with solving on kinematic structures of certain
requirements. The kinematic structure must consist of revolute

joints, which are joints that allow one DOF rotation around
a fixed axis. Within the kinematic structure, all consecutive
joints must also have coplanar rotation axis, that is to say
the rotation axis of all consecutive joint pairs must either be
parallel or intersect at some point in space. This is a limitation
of distance-graphs which is addressed in section III.

A modified version of the base architecture, generative
graphical inverse kinematics plus (GGIK+), is proposed. Three
major changes are made: the addition of direction vectors
to combat the limitation of distance-graphs, updates to how
joint features are represented to incorporate that change, and
the addition of an attention mechanism to message passing
to attend to those new features. These changes are intended
to enhance the data generation process, assist the model on
integrating the changes made to distance-graph formulation,
and to improve predictions when the structures are non-
coplanar. The overall goal is to make GGIK more accurate
and more flexible in situations where kinematic structures are
more complex.

The remainder of the report is organized in the following or-
der. In section II the current SOTA concerned with solving IK
using machine learning is covered. Prior work that established
the advanced machine learning techniques used is briefly
covered. Next, section III covers the modifications made to
the base GGIK architecture. In section IV and section V the
results of GGIK+ are discussed. Finally, section VI covers the
specific limitations that the modifications have introduced into
the overall architecture.

II. RELATED WORKS

Analytical and numerical methods for solving IK have been
long established, so the review of the SOTA is restricted
to learned methods for IK solving. Learned methods for IK
solving can involve many different types of architectures, capa-
bilities, and use-cases (generalizable or robot-model-specific).
A complete comparison of this review is summarized in
Table I.

Duka et al. analyze the performance of a deep neural
network (DNN) on a 2D planar 3R manipulator with arbitrary
joint limits [11]. A dataset is created by generating uniformly
random joint angles within constraints and then computing
the position and orientation of the end-effector. The network
itself is a feed-forward neural network consisting of 3 inputs,



100 neurons in the hidden layer and 3 neurons in the output
layer. They find a best validation RMSE of 0.0054387 when
comparing the predicted and desired output.

Daya et al. present a mix of experts (MoE) MLP architecture
that is strictly valid for 2R planar manipulators and is capable
of identifying multiple solutions [10]. This work attempts to
find a solution in each quadrant of 2D space.

Bensadoun et al. present a solution, IKNet, which is a
hypernetwork that estimates the parameters of several DNNs.
Instead of predicting joint angles, each MLP predicts param-
eters for a Gaussian Mixture Model [12]. This architecture is
tested on several different arm types, ranging from 4 DOF of
7 DOF. Accuracy is measured as the percentage of points that
are up to 2 centimeters from the end-effector. For example,
IKNet finds an accuracy of 99.5% ± 1.3% and a runtime of
0.0070 seconds on the DIGIT 4 DOF arm.

Stephan et al. introduce an unsupervised training method for
inverse kinematics on redundant robots using MLPs with loss
computed in Cartesian space through a differentiable forward
kinematics model [14]. Training data is generated by randomly
sampling joint angles and computing end-effector poses; joint-
space labels are not required. Their loss includes pose error,
joint limit regularization, and an optional loss associated with
obstacle avoidance. On a 7 DOF robot, the model is able to
achieve a position error of 3.59 cm and rotation error of 4.68◦,
with improved performance over supervised MLP baselines for
higher-DOF arms.

Lu et al. propose a neural network-based IK solver for
general six-axis robots that combines multiple MLPs with
a classification model to select between them [13]. Training
data is generated by sampling random joint angles, computing
end-effector poses, and segmenting the joint space into 192
subspaces. A five-output MLP is used for the first five joints,
and a single-output MLP predicts the final joint, followed by
Newton–Raphson-based numerical error minimization. On a
test set of 4800 randomly sampled poses, the classification
system achieves 99.5% accuracy, and the authors report con-
vergence thresholds of 0.001 mm position error and 0.001 rad
orientation error for final predictions.

Limoyo et al. introduced the Generative Graphical Inverse
Kinematics (GGIK) framework, which has been recognized
as a leading approach in the field and is the subject of
improvement in this report [15]. They frame the IK problem
as a distance geometry problem in which desired poses and
solutions are represented as distance-graphs [20]. GGIK can
be considered a conditional variational autoencoder (CVAE).
It uses several modules of equivariant graph neural networks
(EGNNs) and linear variational autoencoders to learn a latent
space of IK problems and a diverse set of IK solutions [21].
GGIK is also trained on a set of randomly generated kinematic
structures of varying link lengths and axis of rotation. This
approach allows a single model to generalize across various
robot geometries and degrees of freedom. Since a CVAE
uses Gaussian mixture model distributions, GGIK is also able
to produce unlimited solutions for a single desired pose. In
evaluations, GGIK achieved a mean position error of under

6mm and a mean orientation error of under 0.4 degrees on sev-
eral commercial manipulators, including the Kuka IIWA and
Franka Emika Panda. Additionally, GGIK has the capability to
generate 1,000 IK solutions in approximately 25 milliseconds,
making it well-suited for applications that require real-time
and diverse sampling.

III. METHODS

The presented architecture, GGIK+, maintains almost all the
core functionality and structure of the base GGIK architecture.
The improvements discussed in this section include changes to
distance-graph theory, feature representation and the addition
of an attention mechanism to handle those features.

A. Distance-Graph Improvement

A major limitation of the base GGIK architecture is that
it is not “truly” generalizable to all robots. The base GGIK
architecture creates graphs using the distance-graph method
which is limited to kinematic structures whose consecutive
joints are always coplanar [20]. Although almost all commer-
cial manipulators fall within this restriction, it does exclude
more unconventional manipulators and complex robots such
as humanoid and quadruped robots.

Traditionally a distance-graph is defined as G = (V,E, d)
where V is a set of vertices, E ⊆ V × V is a set of edges
connecting all pairs of vertices, and d : E → R+ is a
function that assigns a positive weight to each edge equal to
the Euclidean distance between both vertices. This theory is
then applied to robot kinematic structures in which each joint
is represented as a pair of points [20]. This definition is limited
because it only allows for unique distance-graphs to be created
for kinematic structures whose joints are coplanar. In the case
of pairs of joints that are not coplanar, a single distance-
graph can represent two different kinematic structures. A
visualization of this issue of chirality and non-uniqueness is
shown in Figure 1.

To overcome this, a modification to the distance-graph
formulation is proposed. The distance-graph edges not only
include the Euclidean distance between its vertices but also a
direction vector that points from one to the next. This solution
is also visualized in Figure 1. The addition of edge direction
ensures that even for pairs of joints that are non-coplanar,
only a single distance graph can be representative of a single
structure.

B. Dataset Generation

To train the model, datasets were prepared by randomly
generating kinematic structures of 5, 6, 7, or 8 DOF. A
kinematic structure is defined by randomizing link lengths
and axis of rotation. For each sample, the joint angles were
randomized within their valid range to configure the robot in a
random pose. These angles were then passed through a forward
kinematics function to calculate the position and orientation of
each joint, as well as the end-effector.

Using this data, two graphs were created per sample. The
input, or partial graph G̃, contained the known, fixed-structure



Fig. 2: The message passing algorithm for a single E(n) equivariant graph attention (EGAT) layer. In this diagram x is the set
of node positions, h is the set of node type, D is the set of edge attributes, and E is the set of edge indices. The process is
repeated for each pair of nodes, or each edge in the set E until completion.

of the robot and the pose end-effector relative to the base. The
output, or complete graph G, contains all of the information
in G̃ as well as all joint positions and edge relationships
between each joint. This pairing of G̃ and G was used to train
the generative model to infer full joint configurations from a
desired end-effector pose.

A total of 5120 samples were generated by varying link
lengths and rotation axis, for each of which a single random IK
problem was posed. A dataset was created with coplanar joint
layouts to test the baseline, and a non-coplanar joint dataset
using the modification to the distance-graph was also used to
better test the impact of the additional information from the
direction vectors.

C. Model Overview

This project builds on the Generative Graphical Inverse
Kinematics (GGIK) framework, which uses an Equivariant

Graph Neural Network (EGNN) to estimate joint angles based
on the structure of a robot and the target position of its end-
effector. In GGIK, each node in the graph is associated with
a robot joint, and each edge represents a connection between
joints, with features based on spatial relationships. The base
GGIK architecture uses identical encoders and decoders and
treats all neighbors equally when passing messages between
nodes.

In GGIK+, both the encoder and decoder were replaced
with a modified graph neural network that adds attention-
based message weighting and directional edge vectors. These
modifications were designed to help the model better focus on
relevant joints and distinguish spatial arrangements, especially
for non-coplanar kinematic structures. The same architecture
was used for both encoding and decoding to keep the learned
representations consistent across the pipeline.



D. Attention and Directional Features

GGIK+ introduces two key additions: attention and direction
vectors. Attention helps the network focus on the most relevant
joint relationships [22]. For each edge between two nodes, a
small neural network computes an attention score based on the
features of both nodes and their edge attributes. This score is
normalized using softmax across all neighbors and used to
scale the messages passed along each edge.

Direction vectors, defined as the difference in position
between the connected nodes (xj − xi), provide information
about spatial orientation that scalar distance alone cannot
capture. These vectors are passed into the network alongside
the messages to help the model distinguish joint configurations
that may be close in distance but differ in direction. These
features work together to give the model better awareness of
the robot’s structure.

E. Training Setup

GGIK and GGIK+ can be considered Conditional Varia-
tional Autoencoder (CVAE) frameworks. This approach allows
the model to learn a distribution over possible joint configu-
rations conditioned on a goal and partial structure, making
it suitable for tasks with multiple or infinite valid solutions.
The loss function included both a reconstruction term (mean
squared error between predicted and target joint positions)
and a Kullback–Leibler (KL) divergence term to regularize
the latent space. A β scaling schedule was used to gradually
introduce the KL term during training, helping the model
prioritize accurate reconstruction in early epochs and later
learn a smoother latent distribution. The evidence lower bound
(ELBO) loss function, which includes a KL divergence term,
is defined as follows:

L = Eqϕ(Z|G)

[
log pγ(G|G̃, Z)

]
−βKL

(
qϕ(Z|G) ∥ pγ(Z|G̃)

) (3)

where Z is the latent distribution space, β is a KL divergence
scaling factor that increases throughout training, qϕ(Z|G),
qγ(G|G̃, Z), and qγ(Z|G̃) are the distributions that the training
phase seeks to optimize.

F. Implementation Notes

To support attention and direction-aware message passing,
changes were made to both the encoder and decoder networks.
A learnable attention module was added to calculate attention
weights for each edge. These scores were used to scale the
spatial and hidden messages before aggregation. Directional
vectors were passed into the spatial message function to
improve spatial awareness.

The neural networks used to compute spatial and hidden
messages were expanded to handle larger inputs, including
the direction vector. The output size of the hidden message
network was also increased from 3 to 64 dimensions to
allow for richer representations. These updates were applied
consistently to both the encoder and decoder so that the same
message-passing logic was used in both parts of the model.

G. Message Passing and Attention

Message passing in GGIK+ follows the EGNN framework,
but adds attention weighting and directional features (see
Figure 2). For each edge from node i to node j, the process
starts with the function ϕe, which creates a hidden message
mhij

using the node features, the squared distance between xi

and xj , and the edge attributes, including the direction vector.
Then, the function ϕx takes this hidden message and the

direction vector dij = xj − xi to produce a spatial message
mxij

. At the same time, a small attention network computes
an attention weight aij using hi, hj , and the edge features.
This value is normalized with softmax across all neighbors of
node i.

The hidden and spatial messages are scaled by aij , and
the model sums these weighted messages over all incoming
edges to produce the aggregated messages mh and mx. After
aggregation, the function ϕh updates each node’s feature hi

using the original feature and mh, and the node’s position xi

is updated using mx, optionally divided by ci, the number of
neighboring nodes.

As shown in Figure 2, the message-passing process is
repeated for all edges in the graph at each layer, allowing
GGIK+ to gradually refine node positions and features based
on attention and directional context.

IV. EXPERIMENTATION

The base GGIK architecture is compared to GGIK+ over
a series of experiments that evaluate its position accuracy,
rotation accuracy, and training behaviors. For context, GGIK
was originally published with results from a model trained on
4096000 randomly generated kinematic structures and trained
over 300 epochs. Limitations in computing power restricted the
training of the models to 5120 randomly generated kinematic
structures over 50 epochs.

Two different datasets were prepared, a coplanar and a
non-coplanar dataset. Also, two different architectures, base
GGIK and GGIK+. The original thesis primarily planned
to compare GGIK on coplanar data, as presented in the
original publication, against GGIK+ with non-coplanar data.
However, both GGIK and GGIK+ can be trained on either
dataset, so a total of four models were prepared for a more
in depth analysis. This includes the base GGIK architecture
on each dataset, referred to as “egnn coplanar” and “egnn
non-coplanar”, and the GGIK+ architecture on each dataset,
referred to as “egat coplanar” and “egat non-coplanar” in
figures. The addition of these two other models, egnn non-
coplanar and egat coplanar, which were expected to perform
poorly, introduced surprising results. Training was conducted
on a single GeForce RTX 4070 Ti Super. Each model required
about 6 hours to train.

A. Loss Curves

During training, the loss function was tracked at each epoch
to generate the loss curves. The loss function, standard to
CVAE models, consists of a reconstruction term and KL diver-
gence term as described by Equation 3. Both the reconstruction



TABLE II: Minimum Loss Values for All Models

Training Validation
Pose Loss KL Loss Total Loss Pose Loss KL Loss Total Loss

EGNN (coplanar) 1.4955 14.2663 15.7617 1.6027 14.1936 15.7963
EGNN (non-coplanar) 0.9705 12.9278 13.8983 1.0156 12.9542 13.9698
EGAT (coplanar) 2.4903 25.8403 28.3307 2.4741 27.3254 29.7995
EGAT (non-coplanar) 2.0616 7.2253 9.2869 2.0264 7.1660 9.1924

TABLE III: Pose-estimation error statistics for each model.

Position Error [mm] Rotation Error [°]

Model Mean Min Max Q1 Q3 Mean Min Max Q1 Q3

EGAT (coplanar) 682.0 20.8 2411.9 438.1 866.2 98.7 0.9 208.9 60.4 138.2
EGAT (non-coplanar) 686.6 30.3 2385.4 447.4 879.5 102.2 1.1 248.9 64.8 141.5
EGNN (coplanar) 486.1 10.9 1582.1 324.1 625.3 53.5 0.5 180.3 26.2 69.5
EGNN (non-coplanar) 414.7 6.0 1499.7 270.1 539.2 51.0 0.5 180.6 23.4 66.7

term, the KL divergence term and the total loss curves are
shown in Figure 3 for two of the four models trained, the
base GGIK architecture on coplanar data and GGIK+ on non-
coplanar data.

The pose loss of the base GGIK model reaches a lower
score than the GGIK+ model. This is further reinforced by the
fact that the accuracy of this model is also higher in practice.
However, the KL divergence loss and total loss of GGIK+ on
non-coplanar data reaches a lower value than all other models
in terms of validation loss and training loss. Overall, the base
GGIK architecture performs much better on pose loss and the
GGIK+ architecture performs much better on KL divergence
and total loss.

B. Accuracy

Once training is complete, models are tested on five com-
mercially available manipulator arms. These include some
6-DOF manipulators: Universal Robots UR10 and Schunk
LWA4P. As well as a few 7-DOF manipulators: KUKA
IIWA, Schunk LWA4D, and Panda. For each of these robot
manipulators, 100 random IK problems are generated within
the manipulators workspace. For each problem, a position
error in millimeters and rotation error in degrees is recorded.
These errors are then averaged for each manipulator as seen
in Table III. The training results and experimental results
averaged over the 500 sample problems are presented and
discussed below.

The errors in position and rotation for all 500 sample
problems are summarized in the following figures. Figure 4
presents the position error results for all four models catego-
rized by the manipulator the model was tested on. There are
a few surprising results here. The average error of the base
GGIK models was much lower than the modified GGIK+
models across every robot. Critically, the modified GGIK+
architecture with non-coplanar data performed 34.19% worse
in terms of position error than the base GGIK model and
dataset. Also, base GGIK improved its performance with the
non-coplanar dataset compared to the coplanar dataset, despite
the lack of enhancements in GGIK.

V. DISCUSSION

The changes to the model were made to help it focus
on important joint relationships and better handle complex
layouts. Adding attention to the message-passing steps in
both the encoder and decoder was intended to let the model
learn which connections mattered most for predicting the full
configuration. This allowed it to give more weight to certain
joints based on their features and position, rather than treating
all neighbors equally. Direction vectors were added to the
edge features to give the model a clearer sense of how joints
were arranged in space, not just how far apart they were.
This was meant to help the model tell the difference between
similar distances that had different shapes, especially in non-
coplanar setups. Finally, node features were updated to include
more detailed input about each joint, which was expected
to improve how joint roles were represented throughout the
graph. Together, these changes aimed to improve the model’s
ability to pass useful information through the network and to
handle cases where multiple solutions were possible.

The most surprising result of the loss curves was observing
the GGIK+ architecture perform better for KL divergence
and total loss, while simultaneously having worse accuracy in
practice. This indicates that although the model was optimizing
better than the base GGIK architecture, it was most likely op-
timizing for the wrong representation. A lower KL divergence
indicates that the distributions qϕ(Z|G) and pγ(Z|G̃) were
much closer in latent space, however in the process of doing
this the overall accuracy was compromised.

Despite the failures of the modifications to the EGNN layer,
a single improvement on the GGIK architecture was made.
The results indicate that the base GGIK architecture performs
15.85% better in terms of position, and 4.78% better in terms
of rotation on average when using non-coplanar data than
when using a dataset that is limited to coplanar only kinematic
structures. Allowing the generation of non-coplanar kinematic
structures without modifying how the distance-graph is cre-
ated, introduced the issue of chirality. The initial hypothesis
was that this issue would cause problems generalizing and that
a major change to the GGIK architecture and distance-graph



Fig. 3: Training and validation loss curves for GGIK using the coplanar dataset and GGIK+ using the non-coplanar. Both
models are trained using 5120 instances for 50 epochs. Loss curves are divided by terms of the loss function: reconstruction
loss, KL divergence loss, and total loss.

formulation would be necessary to train on non-coplanar data.
However, results indicate that this issue of chirality does not
harm the model and actually improves its performance. The
issue of chirality in distance-graphs may not be as large of a
concern as expected. In theory, this issue means that the model
would be unable to differentiate between kinematic structures
whose joints rotation axis are mirrors of each other. However,
in practice the total configuration space of possible randomly
generated kinematic structures is so vast, that the possibility
of a pair of kinematic structures that meet this requirement is
almost certainly negligible.

VI. LIMITATIONS

Although GGIK+ introduced new features intended to im-
prove performance and generalization, its final performance
was worse than the base GGIK model. This suggests that the
added directional vectors and attention mechanism introduced
new challenges that affected training or generalization. Several
possible explanations are discussed below.

A. Model Complexity and Training Difficulty

GGIK+ includes more layers and larger hidden features than
the baseline. For example, the size of the hidden messages
was increased from 3 to 64 dimensions to support directional
information and more expressive message passing. While this
change aimed to improve the model’s ability to capture spatial
context, it also made training more difficult. Larger models
with more parameters are generally harder to train and can be
more sensitive to learning rates and initialization. In GGIK+,
no consistent improvement in accuracy was observed, suggest-
ing the added complexity did not result in better convergence.

B. Diversity and Ambiguity Resolution

One of the original goals of the GGIK framework is to han-
dle ambiguity in inverse kinematics by learning a conditional
distribution over valid joint configurations. Unlike determin-
istic models, GGIK is designed to output multiple plausible
configurations that satisfy the same end-effector constraint.
The modifications were intended to improve this behavior by
helping the model understand spatial layout via directional
edge vectors and focus on relevant joints via attention.



Fig. 4: Box-and-whiskers plot comparing the accuracy of four separate models. Each model is tested on 500 randomly sampled
IK problems evenly distributed over five commercial manipulators. The position and rotation error in the end-effector between
the actual solution and predicted solution is plotted.

However, the diversity and distribution quality of the sam-
pled outputs were not measured. Without additional metrics to
assess the variety or coverage of the predicted joint layouts, it
is unclear whether GGIK+ led to more meaningful interpreta-
tions of latent samples. While the model likely produced valid
results, it is unclear whether it improved ambiguity resolution
or simply favored one type of solution. Future work could
analyze output diversity using latent space traversal or by
comparing multiple sampled outputs per input.

C. Handling of Non-Coplanar Configurations

A portion of the dataset was generated using non-coplanar
joint layouts to test whether the model could generalize to
more complex kinematic structures. To support this, the model
was given directional edge vectors as part of the message pass-
ing inputs. These vectors were expected to help differentiate
between joints that are close in distance but oriented differently
in space.

However, non-coplanar inputs increase geometric complex-
ity and variability in the edge attributes. This may have made

training more difficult, especially without normalization or
edge-specific regularization. While directional vectors were
included to support non-coplanar cases, whether they improved
results specifically for these examples was not evaluated.

D. Gaps in Evaluation

GGIK and GGIK+ were evaluated using ELBO, which
combines reconstruction loss and KL divergence loss. This is
useful but does not capture all aspects of performance, such as
diversity of sampled outputs, ability to generalize, or accuracy
on non-coplanar cases. Because inverse kinematics allows
multiple correct solutions, a more complete evaluation would
involve sampling multiple outputs and checking whether they
all satisfy the forward kinematics constraint and represent
varied but valid configurations.

The extent to which the attention mechanism consistently
focused on the most important joints or whether directional
vectors improved message relevance was also not evaluated.
These components were trained end-to-end, but their contri-
butions to final performance remain unclear without further



analysis or ablation studies. In addition, the latent space was
not closely examined outside of KL divergence.

VII. CONCLUSION

GGIK+ is presented, a modification to the GGIK architec-
ture specifically designed to overcome the requirement that
the rotation axis of consecutive joints must be coplanar, and
simultaneously improve accuracy. The benefits of integrating
attention into the EGNN layers used in GGIK was explored.
The features introduced in the GGIK+ model—attention, di-
rectional vectors, and deeper message functions—were de-
signed to improve the ability to resolve ambiguity and handle
spatial complexity. The results indicate that our modifications
had mixed effects on the overall architecture. However, the
modifications to the original dataset, including making it sup-
port randomized non-coplanar kinematic structures, improved
the performance of the base GGIK architecture.

In the future, other modifications could be made to the
GGIK architecture with the goal of improving accuracy even
more. Ideally, a learned approach to IK should be able to
at least match numerical methods if it wants to see viability
in practice. Currently GGIK offers 4-6mm error on most
manipulators while numerical methods offer < 0.2mm error.

EGNN layers have a critical role in performance, however
other layers types such as graph attention networks (GAT), and
graph convolution networks (GCN) may still bring value. A
hybrid approach to layer types is not uncommon and careful
concatenation of these types could be beneficial. Especially
since the input to GGIK (distance-graphs) has many different
kinds of features, specialized layers can process a subset of
those features that they work best on.

GGIK has already been shown to be extremely responsive
to curated datasets, a biased data generation algorithm which
prioritizes stable or “upright” configurations that could be
beneficial in practice. For example, humanoid and quadruped
robots almost always need to maintain a configuration that is
balanced and prevents itself from tipping over. Biased datasets
could be generated by incorporating the center of mass and
manipulability of robots as well.

Finally, Ho et al. show that cascaded diffusion models are
able to progressively increase the resolution of an image by
seeding cascaded models with the output of the previous
model instead of random noise [23]. As GGIK follows a
CVAE framework which also utilizes distributions, cascad-
ing GGIK models could be successful in pushing GGIK to
high precisions that are comparable to numerical methods
or increasing accuracy on high DOF robots. Although this
would compromise inference time, it could be beneficial to
applications that are not under a time constraint.
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